Design of Monitoring Device for the Process of Organic Waste Decomposition into Compost Fertilizer and Plant Growth through Smartphones based on Internet of Things Smart Farming

2021 ◽  
Vol 5 (2) ◽  
pp. 52-60
Author(s):  
Haris Isyanto ◽  
Jumail Jumail ◽  
Rahayu Rahayu ◽  
Nofian Firmansyah

Based on data published by the Ministry of Living Environment and Forestry in 2020, Indonesia produces at least 93,200 tons of waste per day in various types of composition or around 34 million tons of waste per year. From the collection of waste, it could be used as compost fertilizer which is taken from leaf waste. From these problems, a device was designed that could monitor the decomposition process of organic waste into compost fertilizer. This device is equipped with a temperature sensor, humidity sensor, sensor of soil pH, soil moisture sensor, and color sensor to monitor the composting fertilizer process. The device could also detect plant growth as an indication that the compost fertilizer made is in good condition. Our device was used on the Internet of Things (IoT) and the blynk application as a monitoring application. From the test results, the temperature sensor's accuracy is 98.2%, the humidity sensor is 96.1%, the soil pH sensor is 95.26%, the soil moisture sensor is 98.55%, and the color sensor successfully detects the results of plant growth well. The design of this device is expected to invite the public to be wiser in sorting waste and using it for the surrounding environment.

2021 ◽  
Vol 5 (2) ◽  
pp. 112
Author(s):  
Puji Ariyanto ◽  
Agus Iskandar ◽  
Ucuk Darusalam

Soil moisture is needed in rice fields for plant growth, with attention to soil moisture in rice fields, it can increase fertility in the land which impacts existing plants. But in regulating soil moisture requires a level that is following the existing plants, because each plant has different humidity settings. This research will design a tool to adjust soil moisture in rice fields automatically to maintain soil moisture according to plant needs. This tool is designed to use a Soil Moisture sensor which can later be used as input data to the ESP8266 to drive a Servo Motor as a soil moisture regulator, a Servo Motor as an irrigation door drive. In making the design of irrigation arrangements, moisture data from each plant is needed because each plant has a different moisture content, from the results of the study, it was found that the soil moisture of kale plants was ± 49% - 68%, and soil moisture of corn plants ± 48% - 63%.Keywords:Automatic Watering, ESP8266, Soil Moisture Sensor.


SAINTEKBU ◽  
2021 ◽  
Vol 13 (02) ◽  
pp. 1-12
Author(s):  
Muhammad Saiful Amin ◽  
Ambar Susanti ◽  
Primaadi Airlangga

The Process Of Making Organic Fertilizer requires a certain temperature and humidity to keep the microorganisms used to be able to stay alive and can decompose perfectly, for that it is necessary to monitor temperature and humidity. Along with the development of this technology, it can be done by remote automation using a microcontroller on the ESP8266 nodemcu based on IoT (Internet Of Things), which is combined with the DS18B20 sensor for temperature measurement and soil moisture sensor, as a humidity meter with a temperature unit of °C. The humidity meter is an analog signal, the larger the value, the more humid of organic fertilizer. Acquired measurement data is sent to the Smartphone using an internet-connected ESP8266 monitoring temperature and humidity, which can be viewed via the Blynk App.


2019 ◽  
Vol 8 (2) ◽  
pp. 75-80
Author(s):  
Fadjri Ramadhan ◽  
Irfan Ardiansah ◽  
Roni Kastaman

Banana is one of the commodities that have nutritional value and high economic value. In order to produce a nice fruit and a high economic value, these plants must grow well. The Factors that can cause the plant to grow well, one of them is water. Water is used by plants, to grow root, stem, leaves and also maturation the fruit. When the plant doesn’t have water, growth will be stunted even death. In addition to deficiencies, excess water on the plant can also cause spoilage. Therefore, needed a tool which can watering plants, especially banana plant. The tool can be made using Arduino. Arduino is brand platform microcontroller that can control various sensors from soil moisture sensor, humidity sensor even it can apply the concept of the Internet of Things. The purpose of this research is to create a prototype automatic watering tool uses concept of the Internet of Things (IoT) to find out the condition of banana plant in real-time. The results obtained, the automatic watering tool successfully built and functional according the design, starting from the arduino that can control the soil moisture sensor to read current soil moisture, insert the data into the database, and the pump doesn’t on, because the moisture didn’t under 41% or in dry condition during the research. These data also sent to the user with a method of push notification.Keywords: Arduino, Banana, Internet of Things, Pushbullet, Push notification


Author(s):  
Adnan Rafi Al Tahtawi ◽  
Erick Andika ◽  
Wildan Nurfauzan Harjanto

This paper presents a pair of portable wireless nodes for a smart agricultural system to control and monitor the agricultural parameters based on Internet of Things (IoT). This system utilizes low-cost wireless communication through an nRF24L01 module between the sensor node and the controller node. The sensor node is placed on the agricultural area with a Li-Ion battery as a power supply, while the controller node is placed at the control and monitoring station. On the sensor node, there is a YL-69 soil moisture sensor and DS18B20 temperature sensor, while in the controller node there is a relay that can set watering on/off condition. In the controller node, there is also an ESP8266 WiFi module that serves to send data to the internet cloud for user monitoring. Both hardware nodes are built in small and portable size. The experimental result shows that the sensor node can transmit soil moisture and temperature data via RF wireless communication to the controller node. Watering is done automatically based on the condition of sensor values. In addition, this system can also be monitored through a website interface, so the users can easily find out the condition of their plant as long as there is internet access.


2001 ◽  
Author(s):  
Robert C. Morrow ◽  
Thomas M. Crabb ◽  
Ronald J. Anderson ◽  
David J. Smith

2020 ◽  
Vol 38 (2) ◽  
pp. 63-67
Author(s):  
Amanda Bayer

Abstract Reduced irrigation (RI) can conserve water and control plant growth; however, the timing of RI applications can impact plant growth and flowering. The goal of this research was to quantify growth of Salvia nemorosa L. ‘Ostfrieland' (East Friesland) in response to RI. A soil-moisture sensor automated irrigation system was used to apply four irrigation treatments: RI and well-watered (WW) controls (20% and 38% substrate water content) and two combination treatments to apply RI for either the first two weeks (20% followed by 38%, RIWW ) or final four weeks (38% followed by 20%, WWRI ) of the six-week study. Flower number, height, compactness, and relative chlorophyll content (SPAD) were not different across treatments. Average flower stem length was greater for the WW and RIWW treatments than for the RI treatment. Shoot dry weight was less for the RI treatment compared to the WW and RIWW treatments, respectively]. Cumulative irrigation volume was lowest for the RI treatment and highest for the RIWW treatment. Visually, plants in the RIWW treatment had an open, floppy habit that would likely negatively impact sales in a retail setting. Plants in the RI treatment were smaller, but visually appealing. Index words: soil moisture sensor, plant production, herbaceous perennial, container plants. Species used in this study: ‘Ostfrieland' salvia (Salvia nemorosa L.).


Author(s):  
Raja Venkatesh Gurugubelli ◽  
Dilleswararao Nettimi ◽  
Vidya Sagar Gorle ◽  
Sairam Panda ◽  
Anil Kumar Navuluri ◽  
...  

The Internet of Things (IoT) is the present and future of every industry, shaping everyone's life by speeding up everything. It's a set of standalone devices that power a self-configuring network. The latest developments in Smart Farming with the help of IoT are slowly but steadily spinning the features of traditional agriculture procedures by not only making it an option, but also by lowering the cost for farmers and decreasing the time it takes to harvest. The aim is to offer a technology that can send messages to farmers through various programmers. Farmers will benefit from the results because they will be able to collect data from the field in real time (temperature, humidity, soil moisture, UV index, and IR) and use it to start doing smart farming by growing crop yields and conserving water. The study presented in this paper makes use of the ESP32 Node MCU, DHT11, and Soil Moisture Sensor, GSM Module, and live data feed can be monitored on Things of Speak an IoT platform. This will have allowed farmers to control their plants in accordance with modern farming methods. [1]


Author(s):  
Atmiasri ◽  
Andika Tri Wiyono

Currently, the control of cultivated plants is still manual, where farmers watering and checking soil moisture on the planting object. However, we cannot avoid technological progress in this life because technological progress will run following scientific advances. Therefore, every innovation is created to provide positive benefits for life. The ideal chili cultivation planning requires information about climatic conditions that play a significant role in chili cultivation is rainfall. Plant growth will be incredible if there is sufficient water supply; humidity for chili plants ranges from 60-80%. Therefore, chili cultivation planning must pay attention to rainfall because related to water availability. Smart Garden prototype design is a solution for taking appropriate actions during extreme weather and reducing human error. A prototype Smart Garden-based Internet of Things (IoT) using the Blynk app as User Interface (GUI) in the monitoring system and using the Soil Moisture sensor as input for soil moisture conditions, where the results of the process are sent via Wemos D1 mini-module to the Blynk server to display the state of soil moisture and automatic watering.


2019 ◽  
Vol 5 (1) ◽  
pp. 97-106
Author(s):  
Rudi Budi Agung ◽  
Muhammad Nur ◽  
Didi Sukayadi

The Indonesian country which is famous for its tropical climate has now experienced a shift in two seasons (dry season and rainy season). This has an impact on cropping and harvesting systems among farmers. In large scale this is very influential considering that farmers in Indonesia are stilldependent on rainfall which results in soil moisture. Some types of plants that are very dependent on soil moisture will greatly require rainfall or water for growth and development. Through this research, researchers tried to make a prototype application for watering plants using ATMEGA328 microcontroller based soil moisture sensor. Development of application systems using the prototype method as a simple method which is the first step and can be developed again for large scale. The working principle of this prototype is simply that when soil moisture reaches a certainthreshold (above 56%) then the system will work by activating the watering system, if it is below 56% the system does not work or in other words soil moisture is considered sufficient for certain plant needs.


Sign in / Sign up

Export Citation Format

Share Document