scholarly journals Implementation Kinematics Modeling and Odometry of Four Omni Wheel Mobile Robot on The Trajectory Planning and Motion Control Based Microcontroller

2021 ◽  
Vol 2 (5) ◽  
Author(s):  
Dhiya Uddin Rijalusalam ◽  
Iswanto Iswanto
2021 ◽  
Author(s):  
Stepan A. Lapshinov ◽  
Vadim A. Shakhnov ◽  
Anton V. Yudin

The paper considers the principles of intelligent motion control of mobile robots using the example of omni-wheel modules. The proposed design solution uses components of movement intelligence in any direction, receiving commands from a human operator or above a standing automatic control device, consisting of an angle of movement direction and the required distance of movement. This paper presents an embodiment of using omni-wheels to move a mobile robot over a flat surface. Features of device and application of drive with three omni-wheels in comparison with differential drive are considered. Kinematics, basic principles of motion control formation, hardware and software complex for its implementation are described. There were revealed two alternative methods of organization of drive control in conditions of shortage of low-level hardware resources on the basis of 8-bit microcontroller, their advantages and disadvantages have been analyzed. Process support and materials have been presented that allows realizing the competitive advantages of development while minimizing the cost of components. Features of mobile robot travel route development have been mentioned on the example of competitive practice.


Sensors ◽  
2020 ◽  
Vol 20 (15) ◽  
pp. 4258 ◽  
Author(s):  
Changwon Kim ◽  
Junho Suh ◽  
Je-Heon Han

This research presents a control structure for an omni-wheel mobile robot (OWMR). The control structure includes the path planning module and the motion control module. In order to secure the robustness and fast control performance required in the operating environment of OWMR, a bio-inspired control method, brain limbic system (BLS)-based control, was applied. Based on the derived OWMR kinematic model, a motion controller was designed. Additionally, an optimal path planning module is suggested by combining the advantages of A* algorithm and the fuzzy analytic hierarchy process (FAHP). In order to verify the performance of the proposed motion control strategy and path planning algorithm, numerical simulations were conducted. Through a point-to-point movement task, circular path tracking task, and randomly moving target tracking task, it was confirmed that the suggesting motion controller is superior to the existing controllers, such as PID. In addition, A*–FAHP was applied to the OWMR to verify the performance of the proposed path planning algorithm, and it was simulated based on the static warehouse environment, dynamic warehouse environment, and autonomous ballet parking scenarios. The simulation results demonstrated that the proposed algorithm generates the optimal path in a short time without collision with stop and moving obstacles.


2010 ◽  
Vol 7 ◽  
pp. 109-117
Author(s):  
O.V. Darintsev ◽  
A.B. Migranov ◽  
B.S. Yudintsev

The article deals with the development of a high-speed sensor system for a mobile robot, used in conjunction with an intelligent method of planning trajectories in conditions of high dynamism of the working space.


Robotics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 48
Author(s):  
Mahmood Reza Azizi ◽  
Alireza Rastegarpanah ◽  
Rustam Stolkin

Motion control in dynamic environments is one of the most important problems in using mobile robots in collaboration with humans and other robots. In this paper, the motion control of a four-Mecanum-wheeled omnidirectional mobile robot (OMR) in dynamic environments is studied. The robot’s differential equations of motion are extracted using Kane’s method and converted to discrete state space form. A nonlinear model predictive control (NMPC) strategy is designed based on the derived mathematical model to stabilize the robot in desired positions and orientations. As a main contribution of this work, the velocity obstacles (VO) approach is reformulated to be introduced in the NMPC system to avoid the robot from collision with moving and fixed obstacles online. Considering the robot’s physical restrictions, the parameters and functions used in the designed control system and collision avoidance strategy are determined through stability and performance analysis and some criteria are established for calculating the best values of these parameters. The effectiveness of the proposed controller and collision avoidance strategy is evaluated through a series of computer simulations. The simulation results show that the proposed strategy is efficient in stabilizing the robot in the desired configuration and in avoiding collision with obstacles, even in narrow spaces and with complicated arrangements of obstacles.


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Alejandro GutierreznGiles ◽  
Luis U. EvangelistanHernandez ◽  
Marco A. Arteaga ◽  
Carlos A. CruznVillar ◽  
Alejandro RodrigueznAngeles

2021 ◽  
Vol 11 (4) ◽  
pp. 1594 ◽  
Author(s):  
Andrea Botta ◽  
Paride Cavallone ◽  
Luigi Tagliavini ◽  
Luca Carbonari ◽  
Carmen Visconte ◽  
...  

In this paper, the effects of wheel slip compensation in trajectory planning for mobile tractor-trailer robot applications are investigated. Firstly, a kinematic model of the proposed robot architecture is marked out, then an experimental campaign is done to identify if it is possible to kinematically compensate trajectories that otherwise would be subject to large lateral slip. Due to the close connection to the experimental data, the results shown are valid only for Epi.q, the prototype that is the main object of this manuscript. Nonetheless, the base concept can be usefully applied to any mobile robot subject to large lateral slip.


Sign in / Sign up

Export Citation Format

Share Document