scholarly journals Preparation and evaluation of adipic dihydrazide cross-linked hyaluronic acid microspheres for cephalexin

2021 ◽  
Vol 9 (1) ◽  
pp. 1-7
Author(s):  
B. Padmasri ◽  
R. Kalyani ◽  
V. Anilkumar ◽  
D. Prasanth ◽  
M. Indu

Hyaluronic acid also called as Hyaluronan, Sodium Hyaluronate (SA), sodium salt form of Hyaluronic acid is a biodegradable, biocompatible, and viscoelastic linear polysaccharide of a wide molecular weight range (1000 to 10,000,000 Da). In this project, described a method for preparing HA microspheres at different pH conditions by adapting a non-toxic and aqueous based crosslinking chemistry for sustained drug delivery of drugs. The derivatization chemistry of HA utilizing adipic dihydrazide has been used to construct hydrogels, applied for microsphere preparation. ADH was coupled efficiently to carbodimide-activated glucoronic acid residues of hyluronans. These ADH modified hyaluronan can be loaded with drug molecules and then cross linked into hydrogel. The drug was present in the bulk of hydrogel droplets which are present in liquid paraffin are precipitated by IPA. Formulating HA microspheres with this method have several advantages. Preliminary studies were conducted to confirm the better ratio of HA and ADH to show maximum entrapment efficiency and drug release. Then microspheres were prepared at different pH conditions and formulations were subjected to evaluation of various parameters like percentage yield, particle size, drug entrapment efficiency, porosity and bulk density, surface morphology, in vitro drug release among which F2B was optimized as best formulation which showed 74.6% entrapment efficiency and above 90% of drug release in 12 hours indicating Hyaluronic acid microspheres can be used as good carriers for sustained drug delivery of drugs.

Author(s):  
GEETHA V. S. ◽  
MALARKODI VELRAJ

Objective: To formulate, optimize and evaluate 5-fluorouracil loaded liquorice crude protein nanoparticles for sustained drug delivery using Box-Behnken design. Methods: 5-fluorouracil (5-FU) loaded liquorice crude protein (LCP) nanoparticles were prepared by desolvation method using ethanol-water (1:2 ratio), Tween-80 (2%v/v) as stabilizing agent and gluteraldehyde (8% v/v) as cross linking agent. The optimization of prepared nanoparticles was carried out using Box-Behnken design with 3 factors 2 levels and 3 responses. The independent variables were A)5-FU concentration B)LCP concentration and C) sonication time while the responses were R1) Drug entrapment efficiency R2) Drug loading efficiency and R3) Particle size. The correlation between factors and responses were studied through response surface plots and mathematical equations. The nanoparticles were evaluated for FTIR, physicochemical properties like particle size and zeta potential by Photon correlation spectroscopy (PCS) and surface morphology by TEM. The entrapment efficiency, drug loading efficiency and in vitro drug release studies in PBS pH 7.4 (24 h) were carried out. The observed values were found to be in close agreement with the predicted value obtained from the optimization process. Results: 5-fluorouracil loaded LCP nanoparticles were prepared by desolvation method, the optimization was carried out by Box-Behnken design and the final formulation was evaluated for particle size (301.1 nm), zeta-potential (-25.8mV), PDI(0.226), with entrapment efficiency (64.07%), drug loading efficiency (28.54%), in vitro drug release (65.2% in 24 h) respectively. The formulated nanoparticles show Higuchi model drug release kinetics with sustained drug delivery for 24 h in pH7.4 buffer. Conclusion: The results were proved to be the most valuable for the sustained delivery of 5-Fluorouracil using liquorice crude protein as carrier. 5-FU–LCP nanoparticles were prepared using Tween-80 as stabilizing agent and gluteraldehyde as cross-linking agent to possess ideal sustained drug release characteristics.


Author(s):  
Anupam K Sachan ◽  
Saurabh Singh ◽  
Kiran Kumari ◽  
Pratibha Devi

Microspheres carrier system made from natural or synthetic polymers used in sustained release drug delivery system. The present study involves formulation and evaluation of floating microspheres of Curcumin for improving the drug bioavailability by prolongation gastric residence time. Curcumin, natural hypoglycemic agent is a lipophilic drug, absorbed poorly from the stomach, quickly eliminated and having short half-life so suitable to formulate floating drug delivery system for sustained release. Floating microspheres of curcumin were formulated by solvent evaporation technique using ethanol and dichloromethane (1:1) as organic solvent and incorporating various synthetic polymers as coating polymer, sustain release polymers and floating agent. The final formulation were evaluated various parameters such as compatibility studies, micrometric properties, In-vitro drug release and % buoyancy. FTIR studies showed that there were no interaction between drug and excipients. The surface morphology studies by SEM confirmed their spherical and smooth surface. The mean particles size were found to be 416-618µm, practical yield of microspheres was in the range of 60.21±0.052% - 80.87±0.043%, drug entrapment efficiency 47.4±0.065% - 77.9±0.036% and % buoyancy 62,24±0.161% - 88.63±0.413%. Result show that entraptmency increased as polymer (Eudragit RS100) conc. Increased. The drug release after 12 hrs. was 72.13% - 87.13% and it decrease as a polymer (HPMC, EC) concentration was decrease.


2016 ◽  
Vol 12 ◽  
pp. 1-8
Author(s):  
S. Nagalakshmi ◽  
T. Sandeep ◽  
S. Shanmuganathan

Delivery of drug through topical route, delivers most convenient and novel approach. The Skin can offer several advantages as a route of drug administration although its barrier nature makes it difficult for most drugs to penetrate in to and permeate through it. During the past decades there has been a lot of interest in lipid vesicles as a tool to improve topical drug delivery. Vesicular system such as liposomes, niosomes, ethosomes and elastic deformable vesicles provide an alternative for improved skin drug delivery. In fact vesicles can act as drug carriers controlling drug release. The Research findings were intended to develop sustained release of aceclofenac niosomes formulations in order to reduce gastrointestinal disturbances and to provide better effect when applied topically. Niosomes of aceclofenac was prepared by modified ether injection method using different ratio of surfactants (Tween 20, 40, 60 & 80) with cholesterol and drug. The developed formulations were optimized based on the high entrapment efficiency and in-vitro release studies. Optimized batch was selected and made in to topical niosomal gel using gelling agents like carbopol and sodium carboxy methyl cellulose. Formulation were evaluated for various parameters like vesicle shape, vesicle size, entrapment efficiency, drug content, compatibility studies, in-vitro release studies and stability studies. Ether injection method was found to be most satisfactory in terms of niosome particle size, drug entrapment efficiency was found to be 88.68 ±0.64 % and in-vitro release studies showed 40% of sustain drug release at the end of 8 hrs of study when compared with marketed formulation. Hence, the formulated niosomal topical gel was found to be a better alternative when compared to the marketed formulation in terms of better efficacy, bioavailability and permeation.


2021 ◽  
Vol 11 (2-S) ◽  
pp. 76-81
Author(s):  
Jddtadmin Journal

Thepurpose of the study was to develop and evaluatemucoadhesive microspheres of Budesonide for pulmonary drug delivery systemhaving prolonged residence time and sustained drug release. Microspheres were prepared by emulsificationsolvent evaporation technique using HPMC, carbopol as polymers in varying ratios. The microspheres were evaluated for its percentage yield, drug entrapment efficiency, particle size and shape, in vitro mucoadhesion study and in vitro drug release studies.The FTIR studies revealed no chemical interaction between the drug molecule and polymers and found that drug was compatible with used polymer. The mucoadhesive microspheres showed particle size, drug entrapment efficiency and yield in the ranges of148 - 164 μm, 68.0 - 85.0%and67.52 - 87.25% respectively. In vitro drug release and mucoadhesion study confirms thatformulationF5 was the best formulation as it releases 81.8 % at the end of 12 hr. in controlled manner and percentage mucoadhesion of 75.2 % after 10 hr. This confirms the developed budesonidemucoadhesive microspheres are promising for pulmonary drug delivery system.   Keywords: Budesonide, Mucoadhesion, Microspheres, Drug entrapment efficiency.


2019 ◽  
Vol 9 (2) ◽  
pp. 97-101
Author(s):  
Rinku Gonekar ◽  
Mohan Lal Kori

The objective of the present study is to develop colon targeted drug delivery system using dextrin (polysaccharide) as a carrier for Azathioprine.  Microspheres containing azathioprine, dextrin and various excipients were prepared by solvent evaporation technique. The prepared microsphere were evaluated by different methods parameters like particle size,  drug entrapment efficiency, percentage yield, shape and surface morphology  and in vitro drug release study. Drug release profile was evaluated in simulated gastric, intestinal fluid and simulated colonic fluid. Best formulation was decided on the basis drug release profile in simulated gastric, intestinal fluid and simulated colonic fluid. In dextrin based microspheres, dextrin as a carrier was found to be suitable for targeting of Azathioprine for local action in the site of colon. Dextrin microspheres released 95-99% of azathioprine in simulated colonic fluid with 4% human fecal matter solution. The results of in-vitro studies of the azathioprine microspheres indicate that for colon targeting dextrin are suitable carriers to deliver the drug specifically in the colonic region. Dextrin based azathoprine microspheres showed no significance change in particle size and % residual upon storage at 5 ± 3ºC, 25 ± 2ºC/60 ± 5% RH (room temperature) and 40 ± 2ºC/75 ±5%RH humidity for three months. Keywords: azathioprine, microsphere, dextrin, colon specific drug delivery.


Author(s):  
K. Anju ◽  
Sneh Priya ◽  
D. S. Sandeep ◽  
Prashant Nayak ◽  
Pankaj Kumar ◽  
...  

Aim:The objective of the present study is to design and characterize the ethosomal gel containing Zaltoprofen for sustained drug delivery and also to reduce the side effects. Zaltoprofen was chosen here as the drug candidate because of its short half-life and increased dosing frequency. Methods: The ethosomes containing Zaltoprofen was prepared by using cold method. A 23 full factorial design containing 10 experimental trails was used in order to obtain an optimized formulation. The prepared ethosomes were characterized by Scanning Electron Microscopy, PDI, zeta potential, vesicle size, and percentage entrapment efficiency. Optimized ethosomal formulation was incorporated in 1% carbopol gel to deliver the drug through topical route. Invitro drug permeation studies of ethosomal gel (EGL) and conventional gel (CGL) was conducted and flux and permeability coefficient were calculated. Results:The vesicle size, zeta potential, and % entrapment efficiency of optimized formulation were found to be 124.33 nm, -45.2 mV and 70.03%, respectively. The surface of the vesicles was found to be spherical and smooth. The in vitro drug release studies of the ethosomal gel formulation showed sustained drug delivery when compared with the conventional gel containing the pure drug. In vitro permeability studies show that the flux of ethosomal gel was 2.5 fold higher than conventional gel, which may be the attribution of ethanol and flexible nature of ethosomes. Conclusion: It was concluded that the ethosomal gel could be a better choice for the topical delivery of Zaltoprofenwith improved bioavailability for its anti-inflammatory activity.


Author(s):  
Srinivasa Rao Baratam ◽  
Vijayaratna J

Objective: The aim of the study was to develop a floating drug delivery system of levofloxacin (LVF) hemihydrate for sustained drug delivery to improve the extended retention in the stomach, oral bioavailability, and local site-specific action in the stomach. Methods: Preparation of LVF tablets using melt granulation method using hydroxypropyl methylcellulose (HPMC) K4M with sodium bicarbonate as gas generating agent. From LFTA1 to LFTA5, formulations were developed and evaluated for floating properties for swelling characteristics and in vitro drug release studies. In vitro dissolution was carried out using USP II paddle method using 0.1N HCI pH buffer at 50 rpm and samples were measured at 294 nm using ultraviolet-visible spectroscopy. Results: Obtained Fourier-transform infrared charts indicated that there is no positive evidence for the interaction between LVF and ingredients of the optimized formula. In vitro drug release was performed and drug release kinetics were evaluated using the linear regression method and were found to be followed the zero-order release by diffusion controlled release. Optimized formula was found to be LFTA4 with 20% of a polymer with 99.03% of drug release with 12 h of floating time and 32 s floating lag time. Conclusion: Matrix tablets (LFTA4) formulated employing 20% HPMC K4M are best suited to be used for gastroretentive dosage form of LVF.


2020 ◽  
Vol 17 ◽  
Author(s):  
Bhaskar Kurangi ◽  
Sunil Jalalpure ◽  
Satveer Jagwani

Aim: The aim of the study was to formulate, characterize, and evaluate the resveratrol-loaded cubosomes (RC) through topical application. Background: Resveratrol (RV) is a nutraceutical compound that has exciting pharmacological potential in different diseases including cancers. Many studies of resveratrol have been reported for anti-melanoma activity. Due to its low bioavailability, the activities of resveratrol are strongly limited. Hence, an approach with nanotechnology has been done to increase its activity through transdermal drug delivery. Objective: To formulate, characterize, and evaluate the resveratrol-loaded cubosomes (RC). To evaluate resveratrol-loaded cubosomal gel (RC-Gel) for its topical application. Methods: RC was formulated by homogenization technique and optimized using a 2-factor 3-level factorial design. Formulated RCs were characterized for particle size, zeta potential, and entrapment efficiency. Optimized RC was evaluated for in vitro release and stability study. Optimized RC was further formulated into cubosomal gel (RC-Gel) using carbopol and evaluated for drug permeation and deposition. Furthermore, developed RC-Gel was evaluated for its topical application using skin irritancy, toxicity, and in vivo local bioavailability studies. Results: The optimized RC indicated cubic-shaped structure with mean particle size, entrapment efficiency, and zeta potential were 113±2.36 nm, 85.07 ± 0.91%, and -27.40 ± 1.40 mV respectively. In vitro drug release of optimized RC demonstrated biphasic drug release with the diffusion-controlled release of resveratrol (RV) (87.20 ± 2.25%). The RC-Gel demonstrated better drug permeation and deposition in mice skin layers. The composition of RC-Gel has been proved non-irritant to the mice skin. In vivo local bioavailability study depicted the good potential of RC-Gel for skin localization. Conclusion: The RC nanoformulation proposes a promising drug delivery system for melanoma treatment simply through topical application.


INDIAN DRUGS ◽  
2017 ◽  
Vol 54 (03) ◽  
pp. 28-38
Author(s):  
S. B. Baliga ◽  
B. P Manjula ◽  
M. Geetha ◽  

Sumatriptan succinate (SS) is a drug used in the treatment of migraine headaches, but suffers from low patient compliance due to its unpalatable bitter taste. The purpose of the present work was to prepare taste-masked oro dispersible tablets (ODTs) of SS by incorporating drug loaded microspheres into tablets for use in patients experiencing difficulty in swallowing. Microspheres loaded with SS were prepared by solvent evaporation technique. Eudragit EPO, a pH-sensitive aminoalkylmethacrylate copolymer, was used for coating the drug particles, acetone as solvent for the polymer and light liquid paraffin as an encapsulating medium. Drug : polymer ratio of 1:1 was considered to be optimized formulation with a yield of 99.96%, entrapment efficiency of 61.55%, particle size ranging from 30.32 – 90.96μm and in vitro drug release of 85.06% within an hour. FTIR studies suggested absence of drug-excipient interaction. Tablets prepared by direct compression containing microspheres and effervescent agents were evaluated for pre-compression and post-compression parameters. The wetting time, in vitro dispersion time and in vitro disintegration time of the tablets were found to be 39 sec, 35 sec and 32 sec, respectively. The drug release from the tablet was about 85.44% within an hour. The SEM of final ODTs revealed that the microspheres remained intact even after compression. Stability studies indicated that the selected formulation was stable. The results obtained suggested that effective taste-masking was achieved for SS using the technique of microencapsulation and ODTs of acceptable characteristics were obtained by adding effervescent agents followed by direct compression.


2021 ◽  
Author(s):  
Cheran K ◽  
Udaykumar B Bolmal ◽  
Archana S Patil ◽  
Umashri A Kokatanur ◽  
Rajashree S Masareddy

Abstract Background: The goal of this study was to develop a gastro retentive floating drug delivery system that would improve site specific activity, patient compliance and therapeutic efficacy.Methodology: Floating microspheres of Miglitol were formulated by double emulsion method using ethyl cellulose and eudragit E100 different weight ratio and PVA as an emulsifier. It has been prepared with respect quantity of polymer concentration and stirring speed to evaluate for % buoyancy, drug entrapment efficiency, particle size drug release rate. Result: The percent of buoyancy, drug entrapment efficiency, particle size, and percentage yield were increased with increase the polymer mixture concentration. Among all formulation batches, F6 showed acceptable results drug entrapment efficiency (86.57%) and buoyancy (94.25%). F10 formulation was prepared to check the predicted and actual factors and compared with optimized formulation F6. The drug release was increased as the polymer concentration was decrease. The kinetic model zero order had the highest regression coefficient value, it was described as a sustained release dosage form. According to ICH guideline accelerated stability studies of F6 and F10 formulations were conducted for 90 days. After 90 days buoyancy and in vitro drug release was performed and the results were F6 and F10 buoyancy was found to be 88.21%, 87.22% and in vitro drug release was found to be 62.87%, 63.51%. Conclusion: The present study, showed compatibility of drug with polymers by FTIR in formulation. Floating microsphere of Miglitol was prepared by double emulsion technique. The F6 Miglitol floating microsphere was optimized formulation demonstrated with excellent drug entrapment performance (86.57%), good floating behaviour (94.25%), and the largest particle size (670µm). The present study concludes that floating based gastro retentive delivery system of Miglitol microspheres has a safe and effective drug delivery system with increased therapeutic efficacy and a longer duration of action.


Sign in / Sign up

Export Citation Format

Share Document