scholarly journals Progress of clinical therapies for dry age-related macular degeneration

2022 ◽  
Vol 15 (1) ◽  
pp. 157-166
Author(s):  
Rhianna Rubner ◽  
◽  
M. Valeria Canto-Soler ◽  

Dry age-related macular degeneration (AMD) is a progressive blinding disease that currently affects millions of people worldwide with no successful treatment available. Significant research efforts are currently underway to develop therapies aimed at slowing the progression of this disease or, more notably, reversing it. Here the therapies which have reached clinical trial for treatment of dry AMD were reviewed. A thorough search of PubMed, Embase, and Clinicaltrials.gov has led to a comprehensive collection of the most recent strategies being evaluated. This review also endeavors to assess the status and future directions of therapeutics for this debilitating condition.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Alessandro Arrigo ◽  
Emanuela Aragona ◽  
Ottavia Battaglia ◽  
Andrea Saladino ◽  
Alessia Amato ◽  
...  

AbstractOuter retinal tubulations (ORT) are a relatively new finding characterizing outer retinal atrophy. The main aim of the present study was to describe ORT development in advanced age-related macular degeneration (AMD) and to assess its relationship with disease’s severity. Patients with advanced AMD characterized either by macular neovascularization or geographic atrophy, showing signs of outer retinal disruption or retinal pigment epithelium atrophy on structural optical coherence tomography (OCT) at the inclusion examination were prospectively recruited. All the patients underwent complete ophthalmologic evaluation, structural OCT scans and fundus autofluorescence imaging. The planned follow-up was of 3-years. Main outcome measures were ORT prevalence, mechanism of ORT formation, mean time needed for complete ORT formation, best-corrected visual acuity (BCVA), definitely decreased autofluorescence (DDAF) area, questionably decreased autofluorescence (QDAF) area, retinal layer thickness, foveal sparing, number of intravitreal injections. We also assessed the possible role of external limiting membrane (ELM) and Müller cells in ORT pathogenesis. Seventy eyes (70 patients) were included; 43 showed dry AMD evolving to geographic atrophy, while 27 displayed the features of wet AMD. Baseline BCVA was 0.5 ± 0.5 LogMAR, decreasing to 0.9 ± 0.5 LogMAR at the 3-year follow-up (p < 0.01). We detected completely formed ORT in 26/70 eyes (37%), subdivided as follows: 20 eyes (77%) wet AMD and 6 eyes (23%) dry AMD (p < 0.01). ORT took 18 ± 8 months (range 3–35 months) to develop fully. We described the steps leading to ORT development, characterized by progressive involvement of, and damage to the photoreceptors, the ELM and the RPE. Eyes displaying ORT were associated with a smaller QDAF area, less retinal layers damage and lower rate of foveal sparing than eyes free of ORT (p < 0.01). We also described pigment accumulations simulating ORT, which were detected in 16/70 eyes (23%), associated with a greater loss of foveal sparing, increased DDAF area and smaller QDAF area at the 3-year follow-up (p < 0.01). In conclusion, this study provided a description of the steps leading to ORT development in AMD. ELM and Müller cells showed a role in ORT pathogenesis. Furthermore, we described a subtype of pigment hypertrophy mimicking ORT, evaluating its clinical utility.


Biology ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 622
Author(s):  
Iswariyaraja Sridevi Gurubaran ◽  
Hanna Heloterä ◽  
Stephen Marry ◽  
Ali Koskela ◽  
Juha M. T. Hyttinen ◽  
...  

Aging-associated chronic oxidative stress and inflammation are known to be involved in various diseases, e.g., age-related macular degeneration (AMD). Previously, we reported the presence of dry AMD-like signs, such as elevated oxidative stress, dysfunctional mitophagy and the accumulation of detrimental oxidized materials in the retinal pigment epithelial (RPE) cells of nuclear factor erythroid 2-related factor 2, and a peroxisome proliferator-activated receptor gamma coactivator 1-alpha (NFE2L2/PGC1α) double knockout (dKO) mouse model. Here, we investigated the dynamics of inflammatory markers in one-year-old NFE2L2/PGC1α dKO mice. Immunohistochemical analysis revealed an increase in levels of Toll-like receptors 3 and 9, while those of NOD-like receptor 3 were decreased in NFE2L2/PGC1α dKO retinal specimens as compared to wild type animals. Further analysis showed a trend towards an increase in complement component C5a independent of component C3, observed to be tightly regulated by complement factor H. Interestingly, we found that thrombin, a serine protease enzyme, was involved in enhancing the terminal pathway producing C5a, independent of C3. We also detected an increase in primary acute phase C-reactive protein and receptor for advanced glycation end products in NFE2L2/PGC1α dKO retina. Our main data show C5 and thrombin upregulation together with decreased C3 levels in this dry AMD-like model. In general, the retina strives to mount an orchestrated inflammatory response while attempting to maintain tissue homeostasis and resolve inflammation.


2021 ◽  
Vol 10 (10) ◽  
pp. 2072
Author(s):  
Phoebe Lin ◽  
Scott M. McClintic ◽  
Urooba Nadeem ◽  
Dimitra Skondra

Blindness from age-related macular degeneration (AMD) is an escalating problem, yet AMD pathogenesis is incompletely understood and treatments are limited. The intestinal microbiota is highly influential in ocular and extraocular diseases with inflammatory components, such as AMD. This article reviews data supporting the role of the intestinal microbiota in AMD pathogenesis. Multiple groups have found an intestinal dysbiosis in advanced AMD. There is growing evidence that environmental factors associated with AMD progression potentially work through the intestinal microbiota. A high-fat diet in apo-E-/- mice exacerbated wet and dry AMD features, presumably through changes in the intestinal microbiome, though other independent mechanisms related to lipid metabolism are also likely at play. AREDS supplementation reversed some adverse intestinal microbial changes in AMD patients. Part of the mechanism of intestinal microbial effects on retinal disease progression is via microbiota-induced microglial activation. The microbiota are at the intersection of genetics and AMD. Higher genetic risk was associated with lower intestinal bacterial diversity in AMD. Microbiota-induced metabolite production and gene expression occur in pathways important in AMD pathogenesis. These studies suggest a crucial link between the intestinal microbiota and AMD pathogenesis, thus providing a novel potential therapeutic target. Thus, the need for large longitudinal studies in patients and germ-free or gnotobiotic animal models has never been more pressing.


Sign in / Sign up

Export Citation Format

Share Document