scholarly journals The Power of ProTAsTM: Work in Progress Paper Assessing the Impact of Industry Professionals as Teaching Assistants and Mentors to Advance Engineering Design Education Innovations

2020 ◽  
Author(s):  
Lindy Mayled ◽  
Ryan Meuth ◽  
Brent Sebold ◽  
Eric Prosser
2018 ◽  
Vol 140 (5) ◽  
Author(s):  
Xuan Zheng ◽  
Sarah C. Ritter ◽  
Scarlett R. Miller

Concept selection tools have been heavily integrated into engineering design education in an effort to reduce the risks and uncertainties of early-phase design ideas and aid students in the decision-making process. However, little research has examined the utility of these tools in promoting creative ideas or their impact on student team decision making throughout the conceptual design process. To fill this research gap, the current study was designed to compare the impact of two concept selection tools, the concept selection matrix (CSM) and the tool for assessing semantic creativity (TASC) on the average quality (AQL) and average novelty (ANV) of ideas selected by student teams at several decision points throughout an 8-week project. The results of the study showed that the AQL increased significantly in the detailed design stage, while the ANV did not change. However, this change in idea quality was not significantly impacted by the concept selection tool used, suggesting other factors may impact student decision making and the development of creative ideas. Finally, student teams were found to select ideas ranked highly in concept selection tools only when these ideas met their expectations, indicating that cognitive biases may be significantly impeding decision making.


Author(s):  
Mohammad Alsager Alzayed ◽  
Christopher McComb ◽  
Samuel T. Hunter ◽  
Scarlett R. Miller

Product dissection has been highlighted as an effective means of interacting with example products in order to produce creative outcomes. While product dissection is often conducted as a team in engineering design education as a component of larger engineering design projects, the research on the effectiveness of product dissection activities has been primarily limited to individuals. Thus, the goal of this study was to investigate the impact of the type(s) of product dissected in a team environment on the breadth of the design space explored and the underlying influence of educational level on these effects. This was accomplished through a computational simulation of 7,000 nominal brainstorming teams generated by a statistical bootstrapping technique that accounted for all possible team configurations. Specifically, each team was composed of four team members based on a design repository of 463 ideas generated by first-year and senior engineering design students after a product dissection activity. The results of the study highlight that simulated senior engineering design teams explored a larger solution space than simulated first-year teams and that dissecting different types of products allowed for the exploration of a larger solution space for all of the teams. The results also showed that dissecting two analogically far and two simple products was most effective in expanding the solution space for simulated senior teams. The findings presented in this study can lead to a better understanding of how to most effectively deploy product dissection modules in engineering design education in order to maximize the solution space explored.


2019 ◽  
Vol 141 (3) ◽  
Author(s):  
Mohammad Alsager Alzayed ◽  
Christopher McComb ◽  
Samuel T. Hunter ◽  
Scarlett R. Miller

Product dissection has been highlighted as an effective means of interacting with example products in order to produce creative outcomes. While product dissection is often conducted as a team in engineering design education, the research on the effectiveness of product dissection activities has been primarily limited to individuals. Thus, the purpose of this study was to investigate the impact of the type(s) of product dissected in a team environment on encouraging creative design outcomes (variety, novelty, and quantity) and the underlying influence of educational level and dissection modality on these effects. This was accomplished through a computational simulation of 14,000 teams of noninteracting brainstorming individuals generated by a statistical bootstrapping technique using a design repository of 931 ideas generated by first-year and senior engineering students. The results of the study highlight the importance of educational level, dissection modality, and the number of products dissected on team design outcomes. Specifically, virtual dissection encouraged the exploration of more novel solutions across both educational levels. However, physical dissection encouraged the exploration of a larger variety and quantity of ideas for senior teams while virtual dissection encouraged the same in first-year teams. Finally, dissecting different types of products allowed teams to explore a larger solution space. The findings presented in this study can lead to a better understanding of how to deploy product dissection modules in engineering design education in order to drive creative design outcomes.


2014 ◽  
Vol 136 (4) ◽  
Author(s):  
Christine A. Toh ◽  
Scarlett R. Miller ◽  
Gül E. Okudan Kremer

Although design novelty is a critical area of research in engineering design, most research in this space has focused on understanding and developing formal idea generation methods instead of focusing on the impact of current design practices. This is problematic because formal techniques are often not adopted in industry due to the burdensome steps often included in these methods, which limit the practicality and adoption of these methods. This study seeks to understand the impact of product dissection, a design method widely utilized in academia and industry, on design novelty in order to produce recommendations for the use or alterations of this method for supporting novelty in design. To investigate the impact of dissection, a study was conducted with 76 engineering students who completed a team-based dissection of an electric toothbrush and then individually generated ideas. The relationships between involvement in the dissection activity, the product dissected, the novelty and quantity of the ideas developed were investigated. The results reveal that team members who were more involved in the dissection activity generated concepts that were more novel than those who did not. In addition, the type of the dissected product also had an influence on design novelty. Finally, a positive correlation between the number of ideas generated and the novelty of the design concepts was identified. The results from this study are used to provide recommendations for leveraging product dissection for enhancing novelty in engineering design education and practice.


2016 ◽  
Vol 138 (10) ◽  
Author(s):  
Christine A. Toh ◽  
Andrew A. Strohmetz ◽  
Scarlett R. Miller

Concept selection is a critical stage of the engineering design process because of its potential to influence the direction of the final design. While formalized selection methods have been developed to increase its effectiveness and reduce human decision-making biases, research that understands these biases in more detail can provide a foundation for improving the selection process. One important bias that occurs during this process is ownership bias or an unintentional preference for an individual's own ideas over the ideas of others. However, few studies have explored ownership bias in a design setting and the influence of other factors such as the gender of the designer or the “goodness” of an idea. In order to understand the impact of these factors in engineering design education, a study was conducted with 110 engineering students. The results from this study show that male students tend to show ownership bias during concept selection by selecting more of their own ideas while female students tend to show the opposite bias, the Halo Effect, by selecting more of their team members' concepts. In addition, participants exhibited ownership bias for ideas that were considered good or high quality, but the opposite bias for ideas that were not considered good or high quality. These results add to our understanding of the factors that impact team concept selection and provide empirical evidence of the occurrence of ownership bias and the effects of gender and idea goodness in engineering design education.


Author(s):  
José E. Lugo ◽  
Mari Luz Zapata-Ramos ◽  
Manuel J. Perez-Vargas

There is a need to improve the innovation and entrepreneurship capacity of engineering design students before graduation, as innovation and entrepreneurship are drivers of economic growth. This paper presents the alignment of existing courses within a university system, mainly Design Thinking (Engineering) and Consumer Behavior (Marketing), with the purpose of developing technology-based entrepreneurship efforts that directly impact a society in need of economic development. Students from each course were presented with six current problems being faced by society, for them to work on in groups. The experience of having interdisciplinary teams working together to achieve a common goal is documented. Also, in order to measure the impact of the courses on the students, a survey of innovation self-efficacy was given to the students at the beginning and at the end of each semester. The results and implications for engineering design education are discussed.


Author(s):  
Jonathan Sauder ◽  
Yan Jin

Students are frequently trained in a variety of methodologies to promote their creativity in the collaborative environment. Some of the training and methods work well, while others present challenges. A collaborative stimulation approach is taken to extend creative cognition to collaborative creativity, providing new insights into design methodologies and training. An experiment using retrospective protocol analysis, originally conducted to identify the various types of collaborative stimulation, revealed how diversity of past creative experiences correlates with collaborative stimulation. This finding aligns with previous research. Unfortunately, many current engineering design education programs do not adequately provide opportunities for diverse creative experiences. As this study and other research has found, there is a need to create courses in engineering design programs which encourage participation in diverse creative activities.


Author(s):  
Warren F. Smith

The “Warman Design and Build Competition”, running across Australasian Universities, is now in its 26th year in 2013. Presented in this paper is a brief history of the competition, documenting the objectives, yearly scenarios, key contributors and champion Universities since its beginning in 1988. Assuming the competition has reached the majority of mechanical and related discipline engineering students in that time, it is fair to say that this competition, as a vehicle of the National Committee on Engineering Design, has served to shape Australasian engineering education in an enduring way. The philosophy of the Warman Design and Build Competition and some of the challenges of running it are described in this perspective by its coordinator since 2003. In particular, the need is for the competition to work effectively across a wide range of student group ability. Not every group engaging with the competition will be competitive nationally, yet all should learn positively from the experience. Reported also in this paper is the collective feedback from the campus organizers in respect to their use of the competition as an educational experience in their classrooms. Each University participating uses the competition differently with respect to student assessment and the support students receive. However, all academic campus organizer responses suggest that the competition supports their own and their institutional learning objectives very well. While the project scenarios have varied widely over the years, the intent to challenge 2nd year university (predominantly mechanical) engineering students with an open-ended statement of requirements in a practical and experiential exercise has been a constant. Students are faced with understanding their opportunity and their client’s value system as expressed in a scoring algorithm. They are required to conceive, construct and demonstrate their device with limited prior knowledge and experience, and the learning outcomes clearly impact their appreciation for teamwork, leadership and product realization.


Sign in / Sign up

Export Citation Format

Share Document