scholarly journals A Flow Visualization Experiment for a First Course in Micro-fluidics

2021 ◽  
Author(s):  
Shantanu Bhattacharya ◽  
Jordan M. Berg ◽  
Darryl James
Materials ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1099 ◽  
Author(s):  
Hanxue Cao ◽  
Chao Shen ◽  
Chengcheng Wang ◽  
Hui Xu ◽  
Juanjuan Zhu

Although numerical simulation accuracy makes progress rapidly, it is in an insufficient phase because of complicated phenomena of the filling process and difficulty of experimental verification in high pressure die casting (HPDC), especially in thin-wall complex die-castings. Therefore, in this paper, a flow visualization experiment is conducted, and the porosity at different locations is predicted under three different fast shot velocities. The differences in flow pattern between the actual filling process and the numerical simulation are compared. It shows that the flow visualization experiment can directly observe the actual and real-time filling process and could be an effective experimental verification method for the accuracy of the flow simulation model in HPDC. Moreover, significant differences start to appear in the flow pattern between the actual experiment and the Anycasting solution after the fragment or atomization formation. Finally, the fast shot velocity would determine the position at which the back flow meets the incoming flow. The junction of two streams of fluid would create more porosity than the other location. There is a transition in flow patterns due to drag crisis under high fast shot velocity around two staggered cylinders, which resulted in the porosity relationship also changing from R1 < R3 < R2 (0.88 m/s) to R1 < R2 < R3 (1.59 and 2.34 m/s).


Author(s):  
Nan Cao ◽  
Xue Li ◽  
Ze-yu Wu ◽  
Xiang Luo

Abstract Discrete hole film cooling has been commonly used as an effective cooling technique to protect gas turbine blades from hot gas. There have been numerous investigations on the cylindrical hole and shaped hole, but few experimental investigations on the cooling mechanism of the novel film holes with side holes (anti-vortex hole and sister hole) are available. This paper presents an experimental and numerical investigation to study the film cooling performance and flow structure of four kinds of film holes (cylindrical hole, fan-shaped hole, anti-vortex hole and sister hole) on the flat plate. The film holes have the same main hole diameter of 4mm and the same inclination angle of 45°. The adiabatic film cooling effectiveness is obtained by the steady-state Thermochromic Liquid Crystal (TLC). The flow visualization experiment and numerical investigation are performed to investigate the flow structure and counter-rotating vortex pair (CRVP) intensity. The smoke is selected as the tracer particle in the flow visualization experiment. The mainstream Reynolds number is 2900, the blowing ratio ranges from 0.3 to 2.0, and the density ratio of coolant to mainstream is 1.065. Experimental results show that compared with the cylindrical hole, the film cooling performance of the anti-vortex hole and sister hole shows significant improvement at all blowing ratios. The sister hole can achieve the best cooling performance at blowing ratios of 0.3 to 1.5. The fan-shaped hole only performs well at high blowing ratios and it performs best at the blowing ratio of 2.0. Flow visualization experiment and numerical investigation reveal that the anti-vortex hole and sister hole can decrease the CRVP intensity of the main hole and suppress the coolant lift-off because of side holes, which increases the film coverage and cooling effectiveness. For the sister hole, the side holes are parallel to the main hole, but for the anti-vortex hole, there are lateral angles between them. The coolant interaction between the side holes and main hole of the sister hole is stronger than that of the anti-vortex hole. Therefore, the sister hole provides better film cooling performance than the anti-vortex hole.


2018 ◽  
Vol 151 ◽  
pp. 03004
Author(s):  
Shohji Hamada ◽  
Yoshifumi Yokoi

When a columnar object is put in a flow, Karman vortex is formed, and aerodynamic noise is generated. It is known that when multiple columnar objects are put in a flow, the flow state becomes complex. This can be known by flow visualization experiment. On other hands, there are few researches on flow sound in the case of mutual interference, that it is not as far as the authors know. Measurement of flow sound is performed using a microphone. Therefore, it is necessary to confirm the sound of the interference flow field reaches the microphone outside the flow field without changing. In this research, experiments were measured to confirm flow sound transmits to a microphone placed outside the flow field without changing. Based on the results, the aerodynamic noise measurement from the columnar object was performed using a low noise wind tunnel experimental apparatus. As a result, it was obtained that some findings on the sound of flow in mutual interference flow field


Sign in / Sign up

Export Citation Format

Share Document