scholarly journals Transient pressure driven flow in an annulus partially filled with porous material: Azimuthal pressure gradient

2018 ◽  
Vol 5 (3) ◽  
pp. 260-267 ◽  
Author(s):  
Basant Jha ◽  
Taiwo Yusuf
Volume 4 ◽  
2004 ◽  
Author(s):  
Keisuke Horiuchi ◽  
Prashanta Dutta

Analytical solution for the temperature distributions, heat transfer coefficients, and Nusselt numbers of steady electroosmotic flows with an arbitrary pressure gradient are obtained for two-dimensional straight micro-channels. The thermal analysis considers interaction among inertial, diffusive and Joule heating terms in order to obtain the thermally developing behavior of mixed electroosmotic and pressure driven flows. In mixed flow cases, the governing equation for energy is not separable in general. Therefore, we introduced a new method that considers the extended Graetz problem. Heat transfer characteristics are presented for low Reynolds number micro-flows where the viscous and electric field terms are very dominant. Analytical results show that the heat transfer coefficient of mixed-electroosmotic and pressure driven flow is smaller than that of pure electroosmotic flow. For the parameter range studied here (Re<0.7), the fully developed Nusselt number is independent of the thermal Peclet number and pressure gradient. Moreover, in mixed electroosmotic and pressure driven flows, the thermal entrance length increases with the imposed pressure gradient.


2019 ◽  
Vol 74 (6) ◽  
pp. 513-521
Author(s):  
F. Talay Akyildiz ◽  
Abeer F.A. AlSohaim ◽  
Nurhan Kaplan

AbstractConsideration is given to steady, fully developed mixed electro-osmotic/pressure-driven flow of Newtonian fluid in an eccentric microannulus. The governing Poisson–Boltzmann and momentum equations are solved numerically in bipolar coordinates. It is shown that for a fixed aspect ratio, fully eccentric channels sustain the maximum average viscosity (i.e. flow rate) under the same dimensionless pressure gradient and electro kinetic radius. For the Debye–Hückel approximation (linearised Poisson–Boltzmann equation), we show that closed-form analytical solution can be derived for velocity field. Finally, the effect of the electrokinetic radius, pressure gradient, and eccentricity on the flow field was investigated in detail.


2012 ◽  
Vol 134 (10) ◽  
Author(s):  
Hadi Yavari ◽  
Arman Sadeghi ◽  
Mohammad Hassan Saidi

The present study considers both the hydrodynamic and thermal characteristics of combined electroosmotic and pressure driven flow in a microannulus. Analytical solutions are presented using the Debye–Hückel linearization along with the uniform Joule heating and negligible viscous dissipation assumptions, whereas exact results are achieved numerically. Here, the range of validity for the Debye–Hückel linearization is found to be about two times of that for a parallel plate microchannel. Accordingly, this linearization may successfully be used to evaluate the potential and velocity distributions up to the zeta potentials of 100 mV, provided that the dimensionless Debye–Hückel parameter is above 10; nevertheless, the calculated wall shear stresses may be significantly different from the exact ones, even for lower zeta potentials. The viscous heating effects are found to be limited to low values of the dimensionless Debye–Hückel parameter. These effects are pronounced in the presence of a favorable pressure gradient, whereas the opposite is true for an opposed pressure gradient. Furthermore, the influence of increasing the annular geometry parameter, that is the inner to outer radii ratio, generally is to decrease both the inner and outer Nusselt numbers. It is also revealed that the pressure effects vanish at higher values of this parameter.


2016 ◽  
Vol 18 (3) ◽  
pp. 1886-1896 ◽  
Author(s):  
Bo Liu ◽  
Renbing Wu ◽  
Julia A. Baimova ◽  
Hong Wu ◽  
Adrian Wing-Keung Law ◽  
...  

Water molecules form layered structures inside graphene bilayers and ultra-high pressure-driven flow rates can be observed.


Sign in / Sign up

Export Citation Format

Share Document