scholarly journals The Progress of Composites with High Thermal Conductivity and Electromagnetic Shielding

2020 ◽  
Vol 1 (4) ◽  
pp. 18
Author(s):  
Houbao Liu ◽  
Renli Fu ◽  
Weisong Dong ◽  
Yingjie Song ◽  
Hao Zhang

<p>As electronic components develop toward high power, high package density, and device size miniaturization,  heat dissipation and electromagnetic interference between electronic components are becoming more and more serious. In order to solve the adverse elec  tromagnetic waves and heat radiation generated by electronic devices, people have high hopes for electronic packaging materials with high thermal conductivity and electromagnetic interference resistance. This paper summa  rizes the research status of high thermal conductivity composite materials and electromagnetic shielding composite materials. Finally, the latest research results of high thermal conductivity and electromagnetic shielding composites are introduced, and the future development trend of new materials for microelectronic packaging is prospected.</p>

RSC Advances ◽  
2017 ◽  
Vol 7 (38) ◽  
pp. 23355-23362 ◽  
Author(s):  
Tao Huang ◽  
Xiaoliang Zeng ◽  
Yimin Yao ◽  
Rong Sun ◽  
Fanling Meng ◽  
...  

In recent decades, significant attention has been focused on developing composite materials with high thermal conductivity utilizing h-BN, which has outstanding thermal conductivity.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Kai-Han Su ◽  
Cherng-Yuh Su ◽  
Cheng-Ta Cho ◽  
Chung-Hsuan Lin ◽  
Guan-Fu Jhou ◽  
...  

Abstract The issue of electronic heat dissipation has received much attention in recent times and has become one of the key factors in electronic components such as circuit boards. Therefore, designing of materials with good thermal conductivity is vital. In this work, a thermally conductive SBP/PU composite was prepared wherein the spherical h-BN@PMMA (SBP) composite powders were dispersed in the polyurethane (PU) matrix. The thermal conductivity of SBP was found to be significantly higher than that of the pure h-BN/PU composite at the same h-BN filler loading. The SBP/PU composite can reach a high thermal conductivity of 7.3 Wm−1 K−1 which is twice as high as that of pure h-BN/PU composite without surface treatment in the same condition. This enhancement in the property can be attributed to the uniform dispersion of SBP in the PU polymer matrix that leads to a three-dimensional continuous heat conduction thereby improving the heat diffusion of the entire composite. Hence, we provide a valuable method for preparing a 3-dimensional heat flow path in polyurethane composite, leading to a high thermal conductivity with a small amount of filler.


2009 ◽  
Vol 2009.48 (0) ◽  
pp. 139-140
Author(s):  
Kouhei FUKUCHI ◽  
Katsuhiko SASAKI ◽  
Terumitsu IMANISHI ◽  
Kazuaki KATAGIRI ◽  
Atushi KAKITSUJI ◽  
...  

2017 ◽  
Vol 114 (9) ◽  
pp. 2143-2148 ◽  
Author(s):  
Michael D. Bartlett ◽  
Navid Kazem ◽  
Matthew J. Powell-Palm ◽  
Xiaonan Huang ◽  
Wenhuan Sun ◽  
...  

Soft dielectric materials typically exhibit poor heat transfer properties due to the dynamics of phonon transport, which constrain thermal conductivity (k) to decrease monotonically with decreasing elastic modulus (E). This thermal−mechanical trade-off is limiting for wearable computing, soft robotics, and other emerging applications that require materials with both high thermal conductivity and low mechanical stiffness. Here, we overcome this constraint with an electrically insulating composite that exhibits an unprecedented combination of metal-like thermal conductivity, an elastic compliance similar to soft biological tissue (Young’s modulus < 100 kPa), and the capability to undergo extreme deformations (>600% strain). By incorporating liquid metal (LM) microdroplets into a soft elastomer, we achieve a ∼25× increase in thermal conductivity (4.7 ± 0.2 W⋅m−1⋅K−1) over the base polymer (0.20 ± 0.01 W⋅m−1·K−1) under stress-free conditions and a ∼50× increase (9.8 ± 0.8 W⋅m−1·K−1) when strained. This exceptional combination of thermal and mechanical properties is enabled by a unique thermal−mechanical coupling that exploits the deformability of the LM inclusions to create thermally conductive pathways in situ. Moreover, these materials offer possibilities for passive heat exchange in stretchable electronics and bioinspired robotics, which we demonstrate through the rapid heat dissipation of an elastomer-mounted extreme high-power LED lamp and a swimming soft robot.


2011 ◽  
Vol 77 (779) ◽  
pp. 1037-1040
Author(s):  
Kohei FUKUCHI ◽  
Katsuhiko SASAKI ◽  
Terumitsu IMANISHI ◽  
Kazuaki KATAGIRI ◽  
Akiyuki SHIMIZU ◽  
...  

1989 ◽  
Vol 154 ◽  
Author(s):  
John J. Glatz ◽  
Juan F. Leon

AbstractThermal management in the packaging of electronic components is fast becoming an enabling technology in the development of reliable electronics for a range of applications. The objective of the paper is to assess the feasibility of using advance high thermal conductivity pitch fiber (HTCPF) as a solution to some of the packaging problems. The general scope will include the following: identification of the candidate material and its potential applications; thermal management of the chip to board interface; thermal management of the heat within the multi-layer interconnect board (MIB); thermal management of the standard electronic module-format E (SEME); and heat transfer thru the enclosure to a remote heatsink/heat exchanger.


Polymers ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 3493
Author(s):  
Zhang Chen ◽  
Ting Yang ◽  
Lin Cheng ◽  
Jianxin Mu

First, nickel particles were deposited on the surface of graphite nanoplatelets to fabricate highly conductive GnPs@Ni core-shell structure hybrid fillers via electroplating. The modified GnPs were blended with polyphenylene sulfone via the solution blending method, followed by the hot-pressing method to achieve high thermally conducting GnPs@Ni/PPSU composites for high performance electromagnetic interference effectiveness. The results showed that in-plane and through-plane thermal conductivity of the composite at the 40 wt% filler loading could reach 2.6 Wm−1K−1 and 3.7 Wm−1K−1, respectively, which were 9.4 and 20 times higher than that of pure PPSU resin. The orientation degree of fillers was discussed by XRD and SEM. Then, heat conduction data were fitted and analyzed by the Agari model, and the heat conduction mechanism was further explored. The testing results also demonstrated that the material exhibited good conductivity, electromagnetic shielding effectiveness and superior thermal stability. Overall, the GnPs@Ni/PPSU composites had high thermal conductivity and were effective electromagnetic shielding materials at high temperatures.


2019 ◽  
Vol 30 (6) ◽  
pp. 2845-2859 ◽  
Author(s):  
Reza Dadsetani ◽  
Ghanbar Ali Sheikhzadeh ◽  
Mohammad Reza Hajmohammadi ◽  
Mohammad Reza Safaei

Purpose Electronic components’ efficiency is the cornerstone of technology progress. The cooling process used for electronic components plays a main role in their performance. Embedded high-conductivity material and provided microchannel heat sink are two common cooling methods. The former is expensive to implement while the latter needs micro-pump, which consumes energy to circulate the flow. The aim of this study is providing a new configuration and method for improving the performance of electronic components. Design/methodology/approach To manage these challenges and improve the cooling efficiency, a novel method named Hybrid is presented here. Each method's performance has been investigated, and the results are widely compared with others. Considering the micro-pump power, the supply of the microchannel flow and the thermal conductivity ratio (thermal conductivity ratio is defined as the ratio of thermal conductivity of high thermal conductivity material to the thermal conductivity of base solid), the maximum disk temperature of each method was evaluated and compared to others. Findings The results indicated that the Hybrid method can reduce the maximum disk temperature up to 90 per cent compared to the embedded high thermal conductivity at the same thermal conductivity ratio. Moreover, the Hybrid method further reduces the maximum disk temperature up to 75 per cent compared to the microchannel, at equivalent power consumption. Originality/value The information in this research is presented in such a way that designers can choose the desired composition, the limited amount of consumed energy and the high temperature of the component. According to the study of radial-hybrid configuration, the different ratio of microchannel and materials with a high thermal conductivity coefficient in the constant cooling volume was investigated. The goal of the investigation was to decrease the maximum temperature of a plate on constant energy consumption. This aim has been obtained in the radial-hybrid configuration.


Sign in / Sign up

Export Citation Format

Share Document