Carbonate Rocks of the Black Shale Bazhenov Formation of the Khanteiskaya Hemianteclise, Western Siberia

Georesursy ◽  
2019 ◽  
Vol 21 (2) ◽  
pp. 129-142 ◽  
Author(s):  
Vika G. Eder ◽  
Elena A. Kostyreva ◽  
Anna Yu. Yurchenko ◽  
Natalia S. Balushkina ◽  
Inga S. Sotnich ◽  
...  

This paper presents data on lithological composition, distribution, reservoir properties, geochemistry of organic matter and genesis of carbonate rocks of the Bazhenov formation within the central part of Western Siberia (the region of the Khantei hemianteclise). The following types of carbonates are distinguished: a) primary biogenic – shell rock interlayers and residues of coccolith; b) dia- and catagenetic – in varying degrees, recrystallized rocks with coccoliths, nodules and aporadiolarites; c) catagenetic – cracks healed with calcite in limestone of the foot of the Bazhenov formation. It was determined that the crystallization of the carbonate material of nodules took place in various conditions: in the bottom part of the sediments and in the later stages of diagenesis. The source of calcite for nodules was calcareous nanoplankton or bivalve shells. The carbonate content of the cuts decreases in the following sequence: Yuzhno-Yagunsky → Povkhovsky → Novortyagunsky → Druzhny areas, which are associated both with facial features and various physicochemical conditions of diagenesis and catagenesis. Transformation of organic matter increases in the northeast direction from South Yagunsky to Povkhovsky area, which is confirmed by molecular parameters of catagenesis. The carbonate rocks of the bottom part of the Bazhenov formation in the South Yagunsky area are similar in structure to the main oil-bearing reservoirs of the Salym and Krasnoleninsky fields.


Georesursy ◽  
2019 ◽  
Vol 21 (2) ◽  
pp. 143-152
Author(s):  
Vika G. Eder ◽  
Alvina G. Zamiraylova ◽  
Georgii A. Kalmykov

A comprehensive lithological-geochemical study of rocks of the Upper Jurassic-Lower Cretaceous blackshale Bazhenov formation showed that most of its carbonatized interlayers to the boundaries of packs of different composition differing in carbonate content, degree of siliceousness or clayiness. At the same time, at the boundaries of the Bazhenov formation with host sediments, where carbonate rocks are often found in association with “pyrite” low carbon rocks according to geochemical parameters (degree of pyritization, Mn/Al, Ua), a change in the redox regime is recorded. In the most studied stratum at intervals of occurrence of carbonates, a change in the redox regime is not observed. It is assumed that they existed alkaline barriers, as evidenced by the change in the composition of rocks. The following geochemical barriers (bottom-up along the section) were identified in the Bazhenov formation and its transition to the enclosing sediments, on which evidence of localization of carbonate minerals was found: redox barrier 1 (lower BF boundary), alkaline barrier 1 (border of mixes of kerogen - clay-siliceous low-carbonate and silicites), alkaline barrier 2 (border of kerogen-clay-siliceous low-carbonate and siliceous-carbonate “coccolith” packs); Redox barrier 2 (the upper limit of the BF).


Geosciences ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 269
Author(s):  
Olga V. Postnikova ◽  
Alexander V. Postnikov ◽  
Olga A. Zueva ◽  
Artem E. Kozionov ◽  
Ekaterina V. Milovanova ◽  
...  

The deposits of the Bazhenov formation are a unique reservoir of unconventional oil reserves in Western Siberia. They contain both solid organic matter (kerogen) and liquid light oil. The successful development of these hydrocarbons is largely determined by the adequacy of the void space models. The aim of the study is to identify the types of void space in the sediments of the Bazhenov formation and to identify the distribution patterns across the section of the researched wells. The void space was studied by electron and optical microscopy, and the mineral composition of the rocks was determined by X-ray diffraction analysis. The deposits of the Bazhenov productive formation in the territory of Western Siberia are represented by a wide complex of lithotypes, including various kinds of silicites, carbonate, clay rocks, and mixtites. The reservoir space in the reservoir rocks of the Bazhenov formation is a complex and hierarchically subordinated system, which includes voids and fractures of various sizes, configurations, and genesis. The void space of the Bazhenov formation is characterized by a fairly high degree of spatial heterogeneity, which is controlled by lithological, facies, and tectonic factors, as well as the direction of catagenetic processes.


Author(s):  
A. S. Roslyakova ◽  
A. G. Kalmykov ◽  
G. A. Kalmykov ◽  
R. A. Khamidullin ◽  
N. I. Korobova ◽  
...  

The paper presents a study of the structure and reservoir properties of rocks of the Bazhenov formation in the sections of three wells located in different structural zones of the Priobskoye field. It is shown that the porosity of the samples varies from 0.02% to 6.95%, the absolute gas permeability of the rocks reaches 1.364 mD. It is established that the collectors in the Bazhenov formation are confined to silicite-radiolarites (possessing porosity associated with the leaching of radiolarian shells) and kerogen-clay-siliceous rock and kerogen-clay silicite (porosity is associated with the release of space between the clay-siliceous matrix and kerogen by ripening organic matter). The following secondary processes influenced the formation of voids in these lithotypes: recrystallization of radiolarians and local warming up.


Author(s):  
L. G. Vakulenko ◽  
◽  
O. D. Nikolenko ◽  
D. A. Novikov ◽  
P. A. Yan ◽  
...  

A comprehensive study of the composition of sand and silt deposits of the Yu1 horizon of the Vasyuganskaya Formation upper part of the Verkh-Tarskoye oil field has been carried out. Associations of authigenic minerals have been determined in their cement, among which the calcite is the most widespread. According to petrographic parameters, three generations of calcite have been identified for which detailed isotopicgeochemical and ultramicroscopic studies were carried out for the first time. Wide and multi directional changes in the isotopic composition of carbon and oxygen and in the chemical composition of carbonate minerals were recorded, they indicate significant variations in the conditions of diagenesis and catagenesis, primarily temperature, and different sources of CO2. Significant variations in the isotopic composition of formation waters and its relationship with the isotopic composition of carbonates have been established. Thus, a narrow interval of close δ13C values was revealed, amounting to –10.5 to –9.1 ‰ in the formation waters of group II, and from –10.7 to –9.1 ‰ in calcites of the third generation. The source of CO2 in this system should be considered a carbon dioxide, which is formed in the process of metamorphism of carbonate rocks of the Paleozoic age.


LITOSFERA ◽  
2020 ◽  
Vol 20 (4) ◽  
pp. 592-600
Author(s):  
G. H. Shaikhutdinova

Subject. This paper presents the results of studies of the mechanism of primary oil migration in the boundary sediments of the late Jurassic (Bazhenov formation)–early Cretaceous (Achimov pack) on the example of the well 431Р of the Imilor field. Materias and methods. Based on the working hypothesis of fluid fracturing as the main mechanism of primary oil migration, using optical-petrographic analysis, supplemented by geochemical research methods, systems of interconnected microcracks in the Tithonian-lower Berriasian and early Valanginian deposits were studied. Results. It is established that the investigated cracks occurred in three stages: 1) formation of primary sedimentary-lithogenetic fissures as a result of dehydration of clays in the stage of diagenesis and hydraulic fractures in the implementation of the Achimov of terrigenous rocks; 2) partial healing of cracks with secondary minerals in the catagenesis; 3) restoration of patency of the cracks in the generation of large amounts of free hydrocarbons of protopetroleum. It is shown that the migration of hydrocarbons generated by the formation occurred both within the Bazhenov formation itself and through a system of interconnected cracks in the contact zone of the Bazhenov formation with the Achimov formation. Conclusion. A detailed study of the mechanism of oil migration allows us to expand our understanding of the reservoir properties of the oil column, which in the future will allow us to forecast the reservoir properties of the Bazhenov formation including in the zones of anomalous sections (for example, in the Kogalym region).


2021 ◽  
Author(s):  
Anton Vasilievich Glotov ◽  
Anton Gennadyevich Skripkin ◽  
Petr Borisovich Molokov ◽  
Nikolay Nilovich Mikhailov

Abstract The article presents a new method of determining the residual water saturation of the Bazhenov Rock Formation using synchronous thermal analysis which is combined with gas IR and MS spectroscopy. The efficiency of the extraction-distillation method of determining open porous and residual saturation in comparison with the developed method which are considered in detail. Based on the results of studies in the properties of the Bazhenov Rock Formation, a significant underestimation of the residual water saturation in the existing guidelines for calculating reserves was found, and the structure of the saturation of rocks occurred to be typical for traditional low-permeability reservoirs. The values of open porous and residual water saturation along the section of the Bazhenov Formation vary greatly, which also contradicts the well-established opinion about the weak variability of the rock properties with depth.


Sign in / Sign up

Export Citation Format

Share Document