scholarly journals Physiological Values of Dairy Cattle during Dry Period in Pangalengan: Hematology, Heart Rate, Respiration Frequency, and Body Temperature

2019 ◽  
Vol 24 (4) ◽  
pp. 375-381
Author(s):  
Agik Suprayogi ◽  
◽  
Khairul Ihsan ◽  
Asep Yayan Ruhyana ◽  
◽  
...  
2017 ◽  
Vol 22 (2) ◽  
pp. 127-132
Author(s):  
Agik Suprayogi ◽  
◽  
Ganjar Alaydrussani ◽  
Asep Yayan Ruhyana ◽  
◽  
...  

2000 ◽  
Vol 39 (02) ◽  
pp. 118-121 ◽  
Author(s):  
S. Akselrod ◽  
S. Eyal

Abstract:A simple nonlinear beat-to-beat model of the human cardiovascular system has been studied. The model, introduced by DeBoer et al. was a simplified linearized version. We present a modified model which allows to investigate the nonlinear dynamics of the cardiovascular system. We found that an increase in the -sympathetic gain, via a Hopf bifurcation, leads to sustained oscillations both in heart rate and blood pressure variables at about 0.1 Hz (Mayer waves). Similar oscillations were observed when increasing the -sympathetic gain or decreasing the vagal gain. Further changes of the gains, even beyond reasonable physiological values, did not reveal another bifurcation. The dynamics observed were thus either fixed point or limit cycle. Introducing respiration into the model showed entrainment between the respiration frequency and the Mayer waves.


1951 ◽  
Vol 10 (4) ◽  
pp. 961-968 ◽  
Author(s):  
G. D. Miller ◽  
J. B. Frye ◽  
B. J. Burch ◽  
P. J. Henderson ◽  
L. L. Rusoff

2021 ◽  
Vol 7 (1) ◽  
pp. e000907
Author(s):  
Giovanni Polsinelli ◽  
Angelo Rodio ◽  
Bruno Federico

IntroductionThe measurement of heart rate is commonly used to estimate exercise intensity. However, during endurance performance, the relationship between heart rate and oxygen consumption may be compromised by cardiovascular drift. This physiological phenomenon mainly consists of a time-dependent increase in heart rate and decrease in systolic volume and may lead to overestimate absolute exercise intensity in prediction models based on heart rate. Previous research has established that cardiovascular drift is correlated to the increase in core body temperature during prolonged exercise. Therefore, monitoring body temperature during exercise may allow to quantify the increase in heart rate attributable to cardiovascular drift and to improve the estimate of absolute exercise intensity. Monitoring core body temperature during exercise may be invasive or inappropriate, but the external auditory canal is an easily accessible alternative site for temperature measurement.Methods and analysisThis study aims to assess the degree of correlation between trends in heart rate and in ear temperature during 120 min of steady-state cycling with intensity of 59% of heart rate reserve in a thermally neutral indoor environment. Ear temperature will be monitored both at the external auditory canal level with a contact probe and at the tympanic level with a professional infrared thermometer.Ethics and disseminationThe study protocol was approved by an independent ethics committee. The results will be submitted for publication in academic journals and disseminated to stakeholders through summary documents and information meetings.


1975 ◽  
Vol 53 (6) ◽  
pp. 679-685 ◽  
Author(s):  
J. B. Holter ◽  
W. E. Urban Jr. ◽  
H. H. Hayes ◽  
H. Silver ◽  
H. R. Skutt

Six adult white-tailed deer (Odocoileus virginianus borealis) were exposed to 165 periods of 12 consecutive hours of controlled constant ambient temperature in an indirect respiration calorimeter. Temperatures among periods varied from 38 to 0 (summer) or to −20C (fall, winter, spring). Traits measured were energy expenditure (metabolic rate), proportion of time spent standing, heart rate, and body temperature, the latter two using telemetry. The deer used body posture extensively as a means of maintaining body energy equilibrium. Energy expenditure was increased at low ambient temperature to combat cold and to maintain relatively constant body temperature. Changes in heart rate paralleled changes in energy expenditure. In a limited number of comparisons, slight wind chill was combatted through behavioral means with no effect on energy expenditure. The reaction of deer to varying ambient temperatures was not the same in all seasons of the year.


2012 ◽  
Vol 47 (2) ◽  
pp. 184-190 ◽  
Author(s):  
Masaki Iguchi ◽  
Andrew E. Littmann ◽  
Shuo-Hsiu Chang ◽  
Lydia A. Wester ◽  
Jane S. Knipper ◽  
...  

Context: Conditions such as osteoarthritis, obesity, and spinal cord injury limit the ability of patients to exercise, preventing them from experiencing many well-documented physiologic stressors. Recent evidence indicates that some of these stressors might derive from exercise-induced body temperature increases. Objective: To determine whether whole-body heat stress without exercise triggers cardiovascular, hormonal, and extra-cellular protein responses of exercise. Design: Randomized controlled trial. Setting: University research laboratory. Patients or Other Participants: Twenty-five young, healthy adults (13 men, 12 women; age = 22.1 ± 2.4 years, height = 175.2 ± 11.6 cm, mass = 69.4 ± 14.8 kg, body mass index = 22.6 ± 4.0) volunteered. Intervention(s): Participants sat in a heat stress chamber with heat (73°C) and without heat (26°C) stress for 30 minutes on separate days. We obtained blood samples from a subset of 13 participants (7 men, 6 women) before and after exposure to heat stress. Main Outcome Measure(s): Extracellular heat shock protein (HSP72) and catecholamine plasma concentration, heart rate, blood pressure, and heat perception. Results: After 30 minutes of heat stress, body temperature measured via rectal sensor increased by 0.8°C. Heart rate increased linearly to 131.4 ± 22.4 beats per minute (F6,24 = 186, P < .001) and systolic and diastolic blood pressure decreased by 16 mm Hg (F6,24 = 10.1, P < .001) and 5 mm Hg (F6,24 = 5.4, P < .001), respectively. Norepinephrine (F1,12 = 12.1, P = .004) and prolactin (F1,12 = 30.2, P < .001) increased in the plasma (58% and 285%, respectively) (P < .05). The HSP72 (F1,12 = 44.7, P < .001) level increased with heat stress by 48.7% ± 53.9%. No cardiovascular or blood variables showed changes during the control trials (quiet sitting in the heat chamber with no heat stress), resulting in differences between heat and control trials. Conclusions: We found that whole-body heat stress triggers some of the physiologic responses observed with exercise. Future studies are necessary to investigate whether carefully prescribed heat stress constitutes a method to augment or supplement exercise.


2014 ◽  
Vol 112 (9) ◽  
pp. 2199-2217 ◽  
Author(s):  
Nabil El Bitar ◽  
Bernard Pollin ◽  
Daniel Le Bars

In thermal neutral condition, rats display cyclic variations of the vasomotion of the tail and paws, synchronized with fluctuations of blood pressure, heart rate, and core body temperature. “On-” and “off-” cells located in the rostral ventromedial medulla, a cerebral structure implicated in somatic sympathetic drive, 1) exhibit similar spontaneous cyclic activities in antiphase and 2) are activated and inhibited by thermal nociceptive stimuli, respectively. We aimed at evaluating the implication of such neurons in autonomic regulation by establishing correlations between their firing and blood pressure, heart rate, and skin and core body temperature variations. When, during a cycle, a relative high core body temperature was reached, the on-cells were activated and within half a minute, the off-cells and blood pressure were depressed, followed by heart rate depression within a further minute; vasodilatation of the tail followed invariably within ∼3 min, often completed with vasodilatation of hind paws. The outcome was an increased heat loss that lessened the core body temperature. When the decrease of core body temperature achieved a few tenths of degrees, sympathetic activation switches off and converse variations occurred, providing cycles of three to seven periods/h. On- and off-cell activities were correlated with inhibition and activation of the sympathetic system, respectively. The temporal sequence of events was as follows: core body temperature → on-cell → off-cell ∼ blood pressure → heart rate → skin temperature → core body temperature. The function of on- and off-cells in nociception should be reexamined, taking into account their correlation with autonomic regulations.


Sign in / Sign up

Export Citation Format

Share Document