scholarly journals Keanekaragaman Mikrob Fungsional Rizosfer Nanas dengan Berbagai Tingkat Produktivitas

2020 ◽  
Vol 25 (4) ◽  
pp. 584-591
Author(s):  
Aditya Dyah Utami ◽  
Suryo Wiyono ◽  
Rahayu Widyastuti ◽  
Priyo Cahyono

Functional microbes of rhizosphere play important roles in nutrient transformation and controlling disease as well as in supporting plant growth and development. However, there is no study on the role of functional microbes on pineapple productivity. The purpose of this study was to investigate the abundance and diversity of soil functional microbes at different growth phases at two levels of productivity and their correlations to disease incidence. The research process included sampling of pineapple rhizospheric soil from vegetative and generative phases pineapples at low and high plant productivity sites, observations of disease incidence, and isolations of functional microbes. Functional groups of bacteria were Azotobacter, phosphate-solubilizing bacteria, potassium-solubilizing bacteria, antibiotics-producing bacteria, IAA-producing bacteria, and chitinolytic bacteria. The soil sampling method was simple randomized sampling at 6 locations with an area of each location ± 5 ha with a depth of 20 cm. Rhizosphere were taken in plants grown in high productivity area (>60tons/ha) and low productivity area (<60 tons/ha) in vegetative and generative phases. The results showed that potassium-solubilizing bacteria, chitinolytic bacteria, and IAA-producing bacteria were more abundant during the generative phase compared to those during vegetative phase. While Azotobacter, phosphate-solubilizing bacteria, and antibiotic-producing bacteria were more predominant during vegetative phase at various crop productivy. Total density of microbes was higher in soil with high crop productivity than that in soil with low crop productivity. The abundance of chitinolytic bacteria and IAA-producing bacteria had negative correlation with disease caused by Erwinia chrysanthemi and Phytophthora cinnamomi. Keywords: chitinolytic bacteria, growth phase, IAA, pineapple disease

2021 ◽  
Vol 9 (8) ◽  
pp. 1619
Author(s):  
Ana Ibáñez ◽  
Alba Diez-Galán ◽  
Rebeca Cobos ◽  
Carla Calvo-Peña ◽  
Carlos Barreiro ◽  
...  

On average less than 1% of the total phosphorous present in soils is available to plants, making phosphorous one of the most limiting macronutrients for crop productivity worldwide. The aim of this work was to isolate and select phosphate solubilizing bacteria (PSB) from the barley rhizosphere, which has other growth promoting traits and can increase crop productivity. A total of 104 different bacterial isolates were extracted from the barley plant rhizosphere. In this case, 64 strains were able to solubilize phosphate in agar plates. The 24 strains exhibiting the highest solubilizing index belonged to 16 different species, of which 7 isolates were discarded since they were identified as putative phytopathogens. The remaining nine strains were tested for their ability to solubilize phosphate in liquid medium and in pot trials performed in a greenhouse. Several of the isolated strains (Advenella mimigardefordensis, Bacillus cereus, Bacillus megaterium and Burkholderia fungorum) were able to significantly improve levels of assimilated phosphate, dry weight of ears and total starch accumulated on ears compared to non-inoculated plants. Since these strains were able to increase the growth and productivity of barley crops, they could be potentially used as microbial inoculants (biofertilizers).


Author(s):  
H. Ali ◽  
M. I. Ahmad

Abstract Cotton crop, plays a significant role in Pakistan’s economy by ruling a prominent place in edible oil and local textile industry. Phosphorus (P) inaccessibility and deficiency of soil organic matter are the key restraints for low crop productivity in cotton. Therefore, a two years field study was designed during 2014-15, to explore the influence of phosphate solubilizing bacteria (PSB), farmyard manure (FYM), poultry manure (PM) and inanimate sources of P on various physiological, growth, yield and quality parameters of cotton crop at CCRI Multan. Field responses of seeds inoculated with two distinctive phosphate solubilizing bacteria (PSB) strains viz. S0 = control, S1 =strain-1, S2 = strain-2 and eight organic, inorganic P sources viz., P0= control, P1 = 80 kg ha-1 P from inorganic source, P2 = 80 kg ha-1 P from FYM, P3 = 80 kg ha-1 P from PM, P4 = 40 kg ha-1 P from FYM + 40 kg ha-1 P from inorganic source, P5 = 40 kg ha-1 P from PM + 40 kg ha-1 P from inorganic source, P6 = 80 kg ha-1 P from FYM + 40 kg ha-1 P from inorganic source, P7 = 80 kg ha-1 P from PM + 40 kg ha-1 P from inorganic source and P8 = 40 kg ha-1 P from FYM + 40 kg ha-1 P from PM were evaluated. Results revealed that inoculation of seeds with PSB and collective use of inorganic and organic sources of P had considerably increased the yield contributing attributes in cotton. However, the treatment P7 (80 kg P ha-1 from PM + 40 kg P ha-1 from inorganic source) in coincidence with seeds inoculated with PSB (S1) produced taller plant, maximum boll weight, significantly higher LAI and CGR. Significantly higher seed cotton yield, lint yield, fiber length and maximum BCR of 1.95 and 1.81 was also obtained from the P7 treatment during both crop-growing seasons. In conclusion, combined use of 80 kg P ha-1 from PM + 40 kg P ha-1 from inorganic source and cotton seeds inoculated with strain-1 improved phosphorus uptake ensuing in greater consumption of photo-assimilates for maximum growth and yield.


2022 ◽  
Vol 11 (1) ◽  
pp. e36211124885
Author(s):  
Rafaela Felix da França ◽  
Erika Valente de Medeiros ◽  
Renata Oliveira Silva ◽  
Ronaldo Anderson da Silva Fausto ◽  
Carlos Alberto Fragoso de Souza ◽  
...  

Phosphorus (P) plays a vital role in many aspects of plant growth and development. The low amount of available P in agricultural soils reduces crop productivity and phosphate fertilizers are often applied. However, due to the high affinity of P for the soil constituents, the availability of this element becomes limited to plants. Thus, alternative, ecological, and low-cost techniques have been studied to improve P acquisition by crops. Microorganisms able to solubilize P, mainly phosphate-solubilizing bacteria (PSB) have stood out, since they offer an approach to overcome P scarcity by their introduction in agricultural systems via inoculants. In this paper, we showed the potential of P-solubilizing microorganisms and their mechanisms of action, the potential of different inoculation vehicles, also highlighting the biochar as a viable biological product for production of inoculants. The combined effects of these factors (PSB and biochar) add several benefits to the soil-plant system. Results from this review demonstrate that biochar amendments have great potential as a vehicle for inoculation of PSB. However, studies of biochar combined with PSB is still incipient. Future research should focus efforts on exploring highly efficient strains, optimizing conditions, and assessing several sources of waste for production of biochar and their efficiency in field experiments.


mSystems ◽  
2022 ◽  
Author(s):  
Xingjie Wu ◽  
Christopher Rensing ◽  
Dongfei Han ◽  
Ke-Qing Xiao ◽  
Yuexiu Dai ◽  
...  

The soil microbiome is the key player regulating phosphorus cycling processes. Identifying phosphate-solubilizing bacteria and utilizing them for release of recalcitrant phosphate that is bound to rocks or minerals have implications for improving crop nutrient acquisition and crop productivity.


2011 ◽  
Vol 52 (No. 3) ◽  
pp. 130-137 ◽  
Author(s):  
H.S. Han ◽  
Supanjani ◽  
K.D. Lee

Biofertilizers have been used as sources to improve plant nutrients in sustainable agriculture. Experiments were conducted to evaluate the potential of phosphate solubilizing bacteria (PSB) Bacillus megaterium var. phosphaticum and potassium solubilizing bacteria (KSB) Bacillus mucilaginosus inoculated in nutrient limited soil planted with pepper and cucumber. Results showed that rock P and K applied either singly or in combination did not significantly enhance soil availability of P and K, indicating their unsuitability for direct application. PSB was a more potent P-solubilizer than KSB, and co-inoculation of PSB and KSB resulted in consistently higher P and K availability than in the control without bacterial inoculum and without rock material fertilizer. Integrated rock P with inoculation of PSB increased the availability of P and K in soil, the uptake of N, P and K by shoot and root, and the growth of pepper and cucumber. Similar but less pronounced results were obtained when rock K and KSB were added concomitantly. Combined together, rock materials and both bacterial strains consistently increased further mineral availability, uptake and plant growth of pepper and cucumber, suggesting its potential use as fertilizer.


2018 ◽  
Vol 6 (3) ◽  
Author(s):  
Suliasih Suliasih

A study was undertaken to investigate to occurance of phosphate solubilizing bacteria from rhizosphere soil samples of medicine plants in Cibodas Botanical Garden. 13 soil samples of medicine plants are collected randomly The result shows that 71 isolates of phosphate solubilizing bacteria were isolated, and 10 species of these organism was identified as Azotobacter sp, Bacillus sp, Chromobacterium sp, C.violaceum, Citrobacter sp. , Enterobacter sp., E. liquefaciens. Nitrosomonas sp., Serratia rubidaea, Sphaerotillus natans. Azotobacter sp. And Bacillus sp. Are found in all of soil tested. Conversely, Serratia rubidaea is only in the sample from rhizosphere of Plantago mayor The activity of acid alkaline phosphatase in soil tested ranged from 0.78 – 60,18 ugp nitrophenole/g/h, with the higest values being recorded in soil sample from rhizosphere of “Lavender”.Keywords : phosphate solubilizing bacteria, soil enzyme phosphatase


Author(s):  
Parimal Panda ◽  
Prasenjit Ray ◽  
Bisweswar Mahato ◽  
Bappa Paramanik ◽  
Ashok Choudhury ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document