scholarly journals Análise da adequação de eventos de precipitação extrema na Amazônia Ocidental em modelos estáticos: Rondônia

Author(s):  
Vinicius Alexandre Sikora de Souza ◽  
Marcos Leando Alves Nunes ◽  
Sandra Ferronatto Francener ◽  
Ana Lúcia Denardin da Rosa

<p><span style="font-size: 12.0pt; line-height: 115%; font-family: 'Times New Roman','serif'; mso-fareast-font-family: Calibri; mso-fareast-theme-font: minor-latin; mso-ansi-language: PT-BR; mso-fareast-language: EN-US; mso-bidi-language: AR-SA;">Este estudo objetivou estimar a função Intensidade-Duração-Frequência (IDF) de eventos pluviométricos extremos a partir dos dados de precipitação das estações pluviométricas instaladas no estado de Rondônia, de modo que posteriormente tais informações possam ser utilizadas no dimensionamento de obras hidráulicas. Utilizou-se 41 estações pluviométricas com séries históricas acima de 10 anos, disponibilizadas pela Agência Nacional de Águas (ANA). Essas séries passaram inicialmente pelo teste de aderência Kolmogorov-Smirnov (KS), a fim de verificar o ajuste das mesmas as </span><span style="font-size: 12pt; line-height: 115%; font-family: 'Times New Roman', serif;">distribuições: Normal, Log-Normal, Exponencial, Gama, Gumbel, Weibull e Logística</span><span style="font-size: 12pt; line-height: 115%; font-family: 'Times New Roman', serif;">. O trabalho denotou que o teste de aderência </span><span style="font-size: 12.0pt; line-height: 115%; font-family: 'Times New Roman','serif'; mso-fareast-font-family: Calibri; mso-fareast-theme-font: minor-latin; mso-ansi-language: PT-BR; mso-fareast-language: EN-US; mso-bidi-language: AR-SA;">Kolmogorov-Smirnov de forma geral forneceu uma expressiva aceitação na maioria das distribuições estatística testadas.</span></p><p> </p><p align="center"><strong><em>Analysis of fitness for extreme rainfall events in western amazon in static models: state Rondônia</em></strong></p><p> </p><p><strong>ABSTRACT: </strong>This study aimed to estimate the Intensity - Duration - Frequency (IDF) function extreme rainfall events from the data of precipitation of rainfall stations located in the State of Rondônia, so that such information can be later used in hydraulic structures. We used 41 rainfall stations with historical series over 10 years, provided by the National Water Agency (ANA). These series originally started by adherence Kolmogorov -Smirnov (KS) in order to check the fit of the same distributions: Normal, Log- Normal, Exponential, Gamma, Gumbel, Weibull and Logistics. Work denoted that the Kolmogorov - Smirnov test of adherence generally provided a significant acceptance in most of the tested statistical distributions.<strong></strong></p><p><span style="font-size: 12.0pt; line-height: 115%; font-family: 'Times New Roman','serif'; mso-fareast-font-family: Calibri; mso-fareast-theme-font: minor-latin; mso-ansi-language: PT-BR; mso-fareast-language: EN-US; mso-bidi-language: AR-SA;"><br /></span></p>

2021 ◽  
Vol 43 ◽  
pp. e30
Author(s):  
Nayara Dos Santos Albrigo ◽  
Maylla Tawanda dos Santos Pereira ◽  
Nelma Tavares Dias Soares ◽  
Gleibson De Souza Andrade ◽  
Vinicius Alexandre Sikora de Souza ◽  
...  

Information on extreme rainfall events associated with predictability and probabilities, especially in intensity-duration-frequency (IDF) curves, are essential for the development of engineering projects aimed at sanitation, drainage and waterproofing of surfaces, which allow to offer more suitable conditions for dimensioning hydraulic and hydrological works and services. However, much of the North Region of the country does not have this information available or updated. Thus, the objective of this study was to develop the IDF equation for the municipality of Cruzeiro do Sul - AC. A 14-year historical series was used, distributed between 1993 and 2011, such data were analyzed by the Gumbel distribution, the same being related, by means of the daily rain breakdown, for return periods comprising 2 to 100 years and rainfall durations of 5 minutes to 24 hours. In the analysis for the construction of the curve, it was observed that the years 1995 and 2002 corresponded to the years with the highest precipitated height indexes, being 111 mm and 103 mm, respectively, however these events had an estimated return time between 3 and 8 years, which does not denote anomalous events. The IDF curve constructed in the study showed good adherence to the observed data, which proves its use in the region.


Irriga ◽  
2019 ◽  
Vol 1 (1) ◽  
pp. 109-115
Author(s):  
LORENA JÚLIO GONÇALVES ◽  
CRISTIANO TAGLIAFERRE ◽  
MANOEL NELSON DE CASTRO FILHO ◽  
RODRIGO LACERDA BRITO NETO ◽  
BISMARC LOPES DA SILVA ◽  
...  

DETERMINAÇÃO DA EQUAÇÃO INTENSIDADE-DURAÇÃO-FREQUÊNCIA PARA ALGUMAS LOCALIDADES DO ESTADO DA BAHIA     LORENA JÚLIO GONÇALVES1; CRISTIANO TAGLIAFERRE2; MANOEL NELSON DE CASTRO FILHO3; RODRIGO LACERDA BRITO NETO4; BISMARC LOPES DA SILVA5 E FELIZARDO ADENILSON ROCHA6   1 Departamento de Engenharia Agrícola e Solos da Universidade Estadual do Sudoeste da Bahia (UESB); Estrada do Bem Querer, Km 04; Caixa Postal 95; CEP 45031-900, Vitória da Conquista – BA, [email protected]; 2 Departamento de Engenharia Agrícola e Solos da Universidade Estadual do Sudoeste da Bahia (UESB); Estrada do Bem Querer, Km 04; Caixa Postal 95; CEP 45031-900, Vitória da Conquista – BA, [email protected]; 3 Departamento de Agronomia da Universidade Federal de Viçosa (UFV); Avenida Peter Henry Rolfs, s/n, Campus Universitário; CEP 36570-900; Viçosa – MG; [email protected]; 4 Mestre em Ciências Florestais pela Universidade Estadual do Sudoeste da Bahia (UESB); Rua Madureira, n° 160, Bairro Primavera; CEP 45700-000, Itapetinga – B; [email protected]; 5 Departamento de Engenharia Agrícola e Solos da Universidade Estadual do Sudoeste da Bahia (UESB); Estrada do Bem Querer, Km 04; Caixa Postal 95; CEP 45031-900, Vitória da Conquista – BA, [email protected]; 6 Instituto Federal da Bahia/ Campus Avançado de Vitória da Conquista; Avenida Sérgio Vieira de Mello, n° 3150, Bairro Zabelê; CEP 45075-265, Vitória da Conquista – BA, [email protected].     1 ABSTRACT   The objective of this study was to fit intensity-duration-frequency equations (IDF) for sites in Bahia state, Brazil. Maximum annual rainfall lasting 5, 10, 15, 20, 30, 60, 360 and 1440 minutes were fitted to Gumbel distribution. Equation parameters were estimated using Gauss Newton method for non-linear regressions. According to Kolmogorov-Smirnov test, all equations were fitted to Gumbel distribution. From fitted distributions, maximum annual rainfall intensity was calculated for 2, 10, 20, 50 and 100years return periods, which were used to define the equation for intense rainfall events. Fitting parameters of the equations varied across rain gage stations, especially for the parameter K, suggesting the need for determining these equations for each site, thereby providing information when designing agricultural and hydraulic projects.   Keywords: Hydrology. Extreme Rainfall. Distribution of Gumbel.     GONÇALVES, L. J.; TAGLIAFERRE, C.; CASTRO FILHO, M. N; BRITO NETO, R. L.; SILVA, B. L; ROCHA, F. A. DETERMINATION OF INTENSITY-DURATION-FREQUENCY EQUATIONS FOR SITES IN BAHIA STATE     2 RESUMO   O objetivo deste estudo foi determinar equações de intensidade-duração-frequência (IDF), com base em chuvas extremas para algumas localidades do Estado da Bahia. As precipitações máximas anuais com duração de 5, 10, 15, 20, 30, 60, 360 e 1440 minutos foram ajustadas à distribuição de Gumbel. Os parâmetros da equação foram estimados pelo método de regressão não linear de Gauss Newton. De acordo com o teste Kolmogorov-Smirnov houve ajuste de todas as equações à distribuição de Gumbel. Através das distribuições ajustadas, calcularam-se os valores de intensidade máxima anual de precipitação para períodos de retorno de 2, 10, 20, 50 e 100 anos, que serviram de base para definir a equação de chuvas intensas. Os valores dos parâmetros ajustados das equações variaram entre as estações, notadamente o parâmetro K, evidenciando a necessidade da determinação dessas equações para cada localidade para dimensionamento de projetos agrícolas e de obras hidráulicas.   Palavras-chave: Hidrologia. Chuvas Intensas. Distribuição de Gumbel.


MAUSAM ◽  
2022 ◽  
Vol 63 (3) ◽  
pp. 391-400
Author(s):  
MEHFOOZ ALI ◽  
SURINDER KAUR ◽  
S.B. TYAGI ◽  
U.P. SINGH

Short duration rainfall estimates and their intensities for different return periods are required for many purposes such as for designing flood for hydraulic structures, urban flooding etc. An attempt has been made in this paper to Model extreme rainfall events of Short Duration over Lower Yamuna Catchment. Annual extreme rainfall series and their intensities were analysed using EVI distribution for rainstorms of short duration of 5, 10, 15, 30, 45 & 60 minutes and various return periods have been computed. The Self recording rainguage (SRRGs) data for the period 1988-2009 over the Lower Yamuna Catchment (LYC) have been used in this study. It has been found that EVI distribution fits well, tested by Kolmogorov-Smirnov goodness of fit test at 5 % level of significance for each of the station.


Author(s):  
Emanuele B. Manke ◽  
Claudia F. A. Teixeira-Gandra ◽  
Rita de C. F. Damé ◽  
André B. Nunes ◽  
Maria C. C. Chagas Neta ◽  
...  

ABSTRACT Although several studies have evaluated the intensity-duration-frequency relationships of extreme rainfall events, these relationships under different seasonal conditions remain relatively unknown. Thus, this study aimed to determine whether the intensity-duration-frequency relationships obtained seasonally from the rainfall records in the winter and summer represent the maximum rainfall events for the city of Pelotas, Rio Grande do Sul state, Brazil. Pluviographic data from 1982 to 2015 were used to create two seasonal series: one for the summer from December 21 to March 20 and the other for the winter from June 21 to September 22. These seasonal relationships were compared with the annual pluviographic data. The intensity, duration, and frequency relationships obtained from the summer rain data adequately represented the maximum rainfall in Pelotas, Rio Grande do Sul state, Brazil. The maximum intensity values of rainfall obtained from the relationship of intensity, duration, and frequency for the winter did not adequately encapsulate the occurrence of rain with greater intensities.


Water ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2167 ◽  
Author(s):  
Bezak ◽  
Mikoš

High-frequency rainfall data is needed in different practical hydrologic applications, such as the construction of the intensity-duration-frequency curves (IDF). This paper presents an investigation of trends (station-wise and regional) for several rainfall durations that were constructed based on the 5 min rainfall data. Moreover, changes in IDF results for two 22-year sub-samples were also analyzed. Additionally, changes in extreme events clustering at the regional scale were also analyzed. Ten rainfall stations (44 years of data 1975–2018) located in Slovenia (central EU, approx. 20,000 km2) were used in this study. Results indicate that no clear pattern in the detected trends can be found based on the analyzed stations. However, all the statistically significant trends at the significance level of 0.05 for the 5 min rainfall data were negative. Moreover, regional trends for this duration were also statistically significant. The changes in the design rainfall events between two equal sub-samples (1975–1996, 1997–2018) were between −30% and 60%. The investigation of changes in extreme rainfall event clustering indicated that extreme 5, 30, and 60 min events could more frequently occur a few days earlier in spring or summer compared to the past period. On the other hand, longer duration events (i.e., 360 and 720 min) tend to more frequently occur a few days later in autumn compared to the past. In most cases, changes are not statistically significant.


Water SA ◽  
2019 ◽  
Vol 45 (3 July) ◽  
Author(s):  
KA Johnson ◽  
JC Smithers

The estimation of design rainfalls is necessary to estimate the exceedance probabilities of extreme floods required to design hydraulic structures and to quantify the risk of failure of these structures. New approaches to estimating extreme rainfall events are being developed internationally. This paper reviews methods for estimating design rainfalls, particularly extreme events, in South Africa and internationally, and highlights the need to update methods used for estimating extreme rainfall events in South Africa as a platform for future research.


Extreme rainfall amount at various return periods is one of the key inputs in the design of various hydraulic structures. In order to reduce damages that may arise due to extreme rainfall, it is very important to estimate accurately by a suitable probability distribution. Gumbel and Gamma distributions are widely applied to fit the extreme rainfall events. In the present work, an attempt is made to find maximum rainfall that could occur at various return periods, (10, 20, 50, 75, 100 and 200 years) for Tiruchirappalli city located in India. The rainfall data starting from the year 1904 to 2010 is used to predict extreme rainfall. Akaike Information Criteria (AIC) and Bayesian information criteria (BIC) were employed to determine the best probability distribution for rainfall data belongs to Tiruchirappalli station.


Author(s):  
Quan Trong Nguyen ◽  
Nhi Thi Thao Pham ◽  
Khoi Nguyen Dao

Recently, the Intensity – Duration – Frequency (IDF) relationship of extreme rainfalls in a local area is usually investigated to provide accurate required data for calculating, planning, and developing urban drainage systems, especially in the context of climate change. Traditionally, IDF curves are computed based on a statistical method for analyzing the frequency of occurrence or non-occurrence of annual extreme rainfall events over a return period; or based on a probability distribution function of these events. However, these traditional methods do not take into consideration the relationship between extreme rainfalls of different durations as they only simulate the intensity of extreme rainfall events at each individual duration after generated a large number of parameter sets. Therefore, the results of these methods are inaccurate and much depend on the actual observed data. In this study, a new approach to develop IDF relations was proposed based on the scale-invariance nature of extreme rainfalls at different durations. This method will be examined and compared with traditional methods based on the IDF curves of extreme rainfalls at Tan Son Nhat gauge station (HCMC) from 1980 to 2015. Results have indicated that there is a linear relationship between extreme rainfalls at different time scales and showed that the proposed method is appropriate for estimating the IDF curves with many prominent advantages rather than traditional method.


2019 ◽  
Vol 1 (1) ◽  
pp. 33
Author(s):  
M Welly

Many people in Indonesia calculate design rainfall before calculating the design flooddischarge. The design rainfall with a certain return period will eventually be convertedinto a design flood discharge by combining it with the characteristics of the watershed.However, the lack of a network of rainfall recording stations makes many areas that arenot hydrologically measured (ungauged basin), so it is quite difficult to know thecharacteristics of rain in the area concerned. This study aims to analyze thecharacteristics of design rainfall in Lampung Province. The focus of the analysis is toinvestigate whether geographical factors influence the design rainfall that occurs in theparticular area. The data used in this study is daily rainfall data from 15 rainfallrecording stations spread in Lampung Province. The method of frequency analysis usedin this study is the Gumbel method. The research shows that the geographical location ofan area does not have significant effect on extreme rainfall events. The effect of risingearth temperatures due to natural exploitation by humans tends to be stronger as a causeof extreme events such as extreme rainfall.Keywords: Influence, geographical, factors, extreme, rainfall.


2013 ◽  
Vol 31 (3) ◽  
pp. 413 ◽  
Author(s):  
André Becker Nunes ◽  
Gilson Carlos Da Silva

ABSTRACT. The eastern region of Santa Catarina State (Brazil) has an important history of natural disasters due to extreme rainfall events. Floods and landslides are enhancedby local features such as orography and urbanization: the replacement of natural surface coverage causing more surface runoff and, hence, flooding. Thus, studies of this type of events – which directly influence life in the towns – take on increasing importance. This work makes a quantitative analysis of occurrences of extreme rainfall events in the eastern and northern regions of Santa Catarina State in the last 60 years, through individual analysis, considering the history of floods ineach selected town, as well as an estimate through to the end of century following regional climate modeling. A positive linear trend, in most of the towns studied, was observed in the results, indicating greater frequency of these events in recent decades, and the HadRM3P climate model shows a heterogeneous increase of events for all towns in the period from 2071 to 2100.Keywords: floods, climate modeling, linear trend. RESUMO. A região leste do Estado de Santa Catarina tem um importante histórico de desastres naturais ocasionados por eventos extremos de precipitação. Inundações e deslizamentos de terra são potencializados pelo relevo acidentado e pela urbanização das cidades da região: a vegetação nativa vem sendo removida acarretando um maior escoamento superficial e, consequentemente, em inundações. Desta forma, torna-se de suma importância os estudos acerca deste tipo de evento que influencia diretamente a sociedade em geral. Neste trabalho é realizada uma análise quantitativa do número de eventos severos de precipitação ocorridos nas regiões leste e norte de Santa Catarina dos últimos 60 anos, por meio de uma análise pontual, considerandoo histórico de inundações de cada cidade selecionada, além de uma projeção para o fim do século de acordo com modelagem climática regional. Na análise dos resultados observou-se uma tendência linear positiva na maioria das cidades, indicando uma maior frequência deste tipo de evento nas últimas décadas, e o modelo climático HadRM3P mostra um aumento heterogêneo no número de eventos para todas as cidades no período de 2071 a 2100.Palavras-chave: inundações, modelagem climática, tendência linear.


Sign in / Sign up

Export Citation Format

Share Document