scholarly journals Isolation and expression pattern of RGS21 gene, a novel RGS member.

2005 ◽  
Vol 52 (4) ◽  
pp. 943-946 ◽  
Author(s):  
Xin Li ◽  
Lei Chen ◽  
Chaoneng Ji ◽  
Bing Liu ◽  
Jiefeng Gu ◽  
...  

Regulators of G-protein signaling (RGS) proteins are known for the RGS domain that is composed of a conserved stretch of 120 amino acids, which binds directly to activated G-protein alpha subunits and acts as a GTPase-activating protein (GAP), leading to their deactivation and termination of downstream signals. In this study, a novel human RGS cDNA (RGS21), 1795 bp long and encoding a 152-amino acid polypeptide, was isolated by large-scale sequencing analysis of a human fetal brain cDNA library. Unlike other RGS family members, RGS21 gene has no additional domain/motif and may represent the smallest known member of RGS family. It may belong to the B/R4 subfamily, which suggests that it may serve exclusively as a negative regulator of alphai/o family members and/or alphaq/11. PCR analysis showed that RGS21 mRNA was expressed ubiquitously in the 16 tissues examined, implying general physiological roles.

2020 ◽  
Vol 2020 (4) ◽  
Author(s):  
Katelin E. Ahlers-Dannen ◽  
Mohammed Alqinyah ◽  
Christopher Bodle ◽  
Josephine Bou Dagher ◽  
Bandana Chakravarti ◽  
...  

Regulator of G protein Signaling, or RGS, proteins serve an important regulatory role in signaling mediated by G protein-coupled receptors (GPCRs). They all share a common RGS domain that directly interacts with active, GTP-bound Gα subunits of heterotrimeric G proteins. RGS proteins stabilize the transition state for GTP hydrolysis on Gα and thus induce a conformational change in the Gα subunit that accelerates GTP hydrolysis, thereby effectively turning off signaling cascades mediated by GPCRs. This GTPase accelerating protein (GAP) activity is the canonical mechanism of action for RGS proteins, although many also possess additional functions and domains. RGS proteins are divided into four families, R4, R7, R12 and RZ based on sequence homology, domain structure as well as specificity towards Gα subunits. For reviews on RGS proteins and their potential as therapeutic targets, see e.g. [160, 377, 411, 415, 416, 512, 519, 312, 6].


1996 ◽  
Vol 16 (9) ◽  
pp. 5194-5209 ◽  
Author(s):  
H G Dohlman ◽  
J Song ◽  
D Ma ◽  
W E Courchesne ◽  
J Thorner

Sst2 is the prototype for the newly recognized RGS (for regulators of G-protein signaling) family. Cells lacking the pheromone-inducible SST2 gene product fail to resume growth after exposure to pheromone. Conversely, overproduction of Sst2 markedly enhanced the rate of recovery from pheromone-induced arrest in the long-term halo bioassay and detectably dampened signaling in a short-term assay of pheromone response (phosphorylation of Ste4, Gbeta subunit). When the GPA1 gene product (Galpha subunit) is absent, the pheromone response pathway is constitutively active and, consequently, growth ceases. Despite sustained induction of Sst2 (observed with specific anti-Sst2 antibodies), gpa1delta mutants remain growth arrested, indicating that the action of Sst2 requires the presence of Gpa1. The N-terminal domain (residues 3 to 307) of Sst2 (698 residues) has sequence similarity to the catalytic regions of bovine GTPase-activating protein and human neurofibromatosis tumor suppressor protein; segments in the C-terminal domain of Sst2 (between residues 417 and 685) are homologous to other RGS proteins. Both the N- and C-terminal domains were required for Sst2 function in vivo. Consistent with a role for Sst2 in binding to and affecting the activity of Gpa1, the majority of Sst2 was membrane associated and colocalized with Gpa1 at the plasma membrane, as judged by sucrose density gradient fractionation. Moreover, from cell extracts, Sst2 could be isolated in a complex with Gpa1 (expressed as a glutathione S-transferase fusion); this association withstood the detergent and salt conditions required for extraction of these proteins from cell membranes. Also, SST2+ cells expressing a GTPase-defective GPA1 mutant displayed an increased sensitivity to pheromone, whereas sst2 cells did not. These results demonstrate that Sst2 and Gpa1 interact physically and suggest that Sst2 is a direct negative regulator of Gpa1.


2018 ◽  
Author(s):  
Xiao Li ◽  
Kaili Zhong ◽  
Ziyi Yin ◽  
Jiexiong Hu ◽  
Lianwei Li ◽  
...  

AbstractRegulator of G-protein signaling (RGS) proteins primarily function as GTPase-accelerating proteins (GAPs) to promote GTP hydrolysis of Gα subunits, thereby regulating G-protein mediated signaling. RGS proteins could also contain additional domains such as GoLoco to inhibit GDP dissociation. The rice blast fungus Magnaporthe oryzae encodes eight RGS and RGS-like proteins (MoRgs1 to MoRgs8) that have shared and distinct functions in growth, appressorium formation and pathogenicity. Interestingly, MoRgs7 and MoRgs8 contain a C-terminal seven-transmembrane domain (7-TM) motif typical of G-protein coupled receptor (GPCR) proteins, in addition to the conserved RGS domain. We found that MoRgs7, together with Gα MoMagA but not MoRgs8, undergoes endocytic transport from the plasma membrane to the endosome upon sensing of surface hydrophobicity. We also found that MoRgs7 can interact with hydrophobic surfaces via a hydrophobic interaction, leading to the perception of environmental hydrophobic cues. Moreover, we found that MoRgs7-MoMagA endocytosis is regulated by actin patch-associated protein MoCrn1, linking it to cAMP signaling. Our studies provided evidence suggesting that MoRgs7 could also function in a GPCR-like manner to sense environmental signals and it, together with additional proteins of diverse functions, promotes cAMP signaling required for developmental processes underlying appressorium function and pathogenicity.Author summaryThe 7-TM domain is considered the hallmark of GPCR proteins, which activate G proteins upon ligand binding and undergo endocytosis for regeneration or recycling. Among eight RGS and RGS-like proteins of M. oryzae, MoRgs7 and MoRgs8 contain the 7-TM domain in addition to the RGS domain. We found that MoRgs7 can form hydrophobic interactions with the hydrophobic surface. This interaction is important in sensing hydrophobic cues by the fungus. We also found that, in response to surface hydrophobicity, MoRgs7 couples with Gα subunit MoMagA to undergo endocytosis leading to the activation of cAMP signaling. Moreover, we found that such an endocytic event requires functions of the actin-binding protein MoCrn1. Our results revealed MoRgs7 functions as a GPCR-like receptor protein to sense surface cues and activate signaling required for pathogenesis, providing new insights into G-protein regulatory mechanisms in this and other pathogenic fungi.


2020 ◽  
Vol 2020 (5) ◽  
Author(s):  
Katelin E. Ahlers-Dannen ◽  
Mohammed Alqinyah ◽  
Christopher Bodle ◽  
Josephine Bou Dagher ◽  
Bandana Chakravarti ◽  
...  

Regulator of G protein Signaling, or RGS, proteins serve an important regulatory role in signaling mediated by G protein-coupled receptors (GPCRs). They all share a common RGS domain that directly interacts with active, GTP-bound Gα subunits of heterotrimeric G proteins. RGS proteins stabilize the transition state for GTP hydrolysis on Gα and thus induce a conformational change in the Gα subunit that accelerates GTP hydrolysis, thereby effectively turning off signaling cascades mediated by GPCRs. This GTPase accelerating protein (GAP) activity is the canonical mechanism of action for RGS proteins, although many also possess additional functions and domains. RGS proteins are divided into four families, R4, R7, R12 and RZ based on sequence homology, domain structure as well as specificity towards Gα subunits. For reviews on RGS proteins and their potential as therapeutic targets, see e.g. [183, 411, 446, 450, 451, 558, 566, 345, 9].


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Katelin E. Ahlers-Dannen ◽  
Mohammed Alqinyah ◽  
Christopher Bodle ◽  
Josephine Bou Dagher ◽  
Bandana Chakravarti ◽  
...  

Regulator of G protein Signaling, or RGS, proteins serve an important regulatory role in signaling mediated by G protein-coupled receptors (GPCRs). They all share a common RGS domain that directly interacts with active, GTP-bound Gα subunits of heterotrimeric G proteins. RGS proteins stabilize the transition state for GTP hydrolysis on Gα and thus induce a conformational change in the Gα subunit that accelerates GTP hydrolysis, thereby effectively turning off signaling cascades mediated by GPCRs. This GTPase accelerating protein (GAP) activity is the canonical mechanism of action for RGS proteins, although many also possess additional functions and domains. RGS proteins are divided into four families, R4, R7, R12 and RZ based on sequence homology, domain structure as well as specificity towards Gα subunits. For reviews on RGS proteins and their potential as therapeutic targets, see e.g. [225, 529, 578, 583, 584, 742, 753, 444, 10].


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8461
Author(s):  
Emilie E. Vomhof-DeKrey ◽  
Josey Umthun ◽  
Marc D. Basson

Background The Schlafen (Slfn) family proteins are important for regulation of cell growth, cell differentiation and cell cycle progression. We sought to distinguish Slfn family expression in Slfn3 knockout (KO) mice after RNA sequencing analysis of Slfn3KO vs. wildtype (WT) mice revealed varying expressions of Slfn family in ileal mucosa. Methods Quantitative PCR analysis of Slfn members was evaluated in ileal mucosa, thymus and spleen tissue since Slfn family members have roles in differentiating intestinal and immune cells. Results Ileal mucosa of Slfn3KO mice displayed a decrease in Slfn3, 4, 8 and 9 while Slfn1 and 5 increased in mRNA expression vs. WT mice. Thymic tissue had a Slfn9 increase and a Slfn4 decrease while splenic tissue had a Slfn8 and Slfn9 increase in Slfn3KO mice vs. WT mice. These differential expressions of Slfn members could indicate a feedback regulatory mechanism within the Slfn family. Indeed, MATCH™ tool from geneXplain predicted that all Slfn members have regions in their promoters for the Kruppel-like factor-6 transcription factor. In addition, NFAT related factors, ING4, ZNF333 and KLF4 are also predicted to bind in up to 6 of the 8 Slfn promoters. This study further describes a possible autoregulatory mechanism amongst the Slfn family members which could be important in how they regulate the differentiation of various cell types.


Development ◽  
2000 ◽  
Vol 127 (13) ◽  
pp. 2773-2784
Author(s):  
C. Wu ◽  
Q. Zeng ◽  
K.J. Blumer ◽  
A.J. Muslin

RGS family members are GTPase activating proteins (GAPs) that antagonize signaling by heterotrimeric G proteins. Injection of Xenopus embryos with RNA encoding rat RGS4 (rRGS4), a GAP for G(i) and G(q), resulted in shortened trunks and decreased skeletal muscle. This phenotype is nearly identical to the effect of injection of either frzb or dominant negative Xwnt-8. Injection of human RGS2, which selectively deactivates G(q), had similar effects. rRGS4 inhibited the ability of early Xwnt-8 but not Xdsh misexpression to cause axis duplication. This effect is distinct from axin family members that contain RGS-like domains but act downstream of Xdsh. We identified two Xenopus RGS4 homologs, one of which, Xrgs4a, was expressed as a Spemann organizer component. Injection of Xenopus embryos with Xrgs4a also resulted in shortened trunks and decreased skeletal muscle. These results suggest that RGS proteins modulate Xwnt-8 signaling by attenuating the function of a G protein.


Development ◽  
1999 ◽  
Vol 126 (8) ◽  
pp. 1781-1791 ◽  
Author(s):  
S. Granderath ◽  
A. Stollewerk ◽  
S. Greig ◽  
C.S. Goodman ◽  
C.J. O'Kane ◽  
...  

In Drosophila, glial cell development depends on the gene glial cells missing (gcm). gcm activates the expression of other transcription factors such as pointed and repo, which control subsequent glial differentiation. In order to better understand glial cell differentiation, we have screened for genes whose expression in glial cells depends on the activity of pointed. Using an enhancer trap approach, we have identified loco as such a gene. loco is expressed in most lateral CNS glial cells throughout development. Embryos lacking loco function have an normal overall morphology, but fail to hatch. Ultrastructural analysis of homozygous mutant loco embryos reveals a severe glial cell differentiation defect. Mutant glial cells fail to properly ensheath longitudinal axon tracts and do not form the normal glial-glial cell contacts, resulting in a disruption of the blood-brain barrier. Hypomorphic loco alleles were isolated following an EMS mutagenesis. Rare escapers eclose which show impaired locomotor capabilities. loco encodes the first two known Drosophila members of the family of Regulators of G-protein signalling (RGS) proteins, known to interact with the alpha subunits of G-proteins. loco specifically interacts with the Drosophila alphai-subunit. Strikingly, the interaction is not confined to the RGS domain. This interaction and the coexpression of LOCO and Galphai suggests a function of G-protein signalling for glial cell development.


2002 ◽  
Vol 365 (3) ◽  
pp. 677-684 ◽  
Author(s):  
Jiaxin NIU ◽  
Astrid SCHESCHONKA ◽  
Kirk M. DRUEY ◽  
Amanda DAVIS ◽  
Eleanor REED ◽  
...  

RGS3 belongs to a family of the regulators of G-protein signalling (RGS), which bind and inhibit the Gα subunits of heterotrimeric G-proteins via a homologous RGS domain. Increasing evidence suggests that RGS proteins can also interact with targets other than G-proteins. Employing yeast two-hybrid screening of a cDNA library, we identified an interaction between RGS3 and the phosphoserine-binding protein 14-3-3. This interaction was confirmed by in vitro binding and co-immunoprecipitation experiments. RGS3-deletion analysis revealed the presence of a single 14-3-3-binding site located outside of the RGS domain. Ser264 was then identified as the 14-3-3-binding site of RGS3. The S264A mutation resulted in the loss of RGS3 binding to 14-3-3, without affecting its ability to bind Gαq. Signalling studies showed that the S264A mutant was more potent than the wild-type RGS3 in inhibition of G-protein-mediated signalling. Binding experiments revealed that RGS3 exists in two separate pools, either 14-3-3-bound or G-protein-bound, and that the 14-3-3-bound RGS3 is unable to interact with G-proteins. These data are consistent with the model wherein 14-3-3 serves as a scavenger of RGS3, regulating the amounts of RGS3 available for binding G-proteins. This study describes a new level in the regulation of G-protein signalling, in which the inhibitors of G-proteins, RGS proteins, can themselves be regulated by phosphorylation and binding 14-3-3.


2003 ◽  
Vol 23 (4) ◽  
pp. 213-224 ◽  
Author(s):  
Ying-Shi Ou-Yang ◽  
Yaping Tu ◽  
Fuyu Yang

Regulator of G protein signaling (RGS) proteins are GTPase-activating proteins (GAP) for G protein α-subunits and are thought to be responsible for rapid deactivation of G protein mediated signaling pathway. In this present study, we demonstrate that PA is the most efficient candidate to inhibit GAP activity of RGS4. The functional significance of N-terminus of RGS4 in respose to PA-granted inhibition on GAP activity has been studied with the site mutation in the N-terminus of RGS4. These site-directed mutations in the N-terminal domain do not severely disrupt its association with liposomes of PA. However, RGS4L23E diminishes the inhibition of GAP activity by PA compared with the wild type RGS4, whereas RGSR22E abrogates the inhibitory effect by PA on GAP activity. The correspondent conformational discrepancy in the RGS domain of these mutants in the presence of PA vesicles was detected from fluorescence experiments. It is suggested that the functional pertinence between the N-terminus and RGS domain may be important to modulate PA-conferred inhibitory effect on its GAP activity.


Sign in / Sign up

Export Citation Format

Share Document