scholarly journals Interaction network of proteins associated with unfavorable prognosis in acute myeloid leukemia

Author(s):  
Juan Jose Rendon-Rodriguez ◽  
Luisa Fernanda Restrepo-Rodriguez ◽  
Sarah Rothlisberger

Acute myeloid leukemia (AML) is a malignant disorder of hematopoietic stem and progenitor cells, characterized by accumulation of immature blasts in the bone marrow and peripheral blood of affected patients. Standard induction therapy leads to complete remission in approximately 50% to 75% of patients. In spite of favorable primary response rates, only 20% to 30% of patients enjoy long-term disease free survival. Identifying proteins involved in prognosis is important for proposing biomarkers that can aid in the clinical management of the disease. The aim of this study was to construct a protein-protein interaction (PPI) network based on serum proteins associated with unfavorable prognosis of AML, and analyze the biological pathways underlying molecular complexes in the network. We identified 16 candidate serum proteins associated with unfavorable prognosis (in terms of poor response to treatment, poor overall survival, short complete remission, and relapse) in AML via a search in the literature: IL2RA, FTL, HSP90AA1, D2HGDH, PLAU, COL18A1, FGF19, SPP1, FGA, PF4, NME1, TNF, ANGPT2, B2M, CD274, LGALS3. The PPI network was constructed with Cytoscape using association networks from String and BioGRID, and Gene Ontology enrichment analysis using the ClueGo pluggin was performed. The central protein in the network was found to be PTPN11 which is involved in modulating the RAS-ERK, PI3K-AKT and JAK-STAT pathways, as well as in hematopoiesis, and in the regulation of apoptotic genes. Therefore, a dysregulation of this protein and/or of the proteins connected to it in the network leads to the defective activation of these signaling pathways and to a reduction in apoptosis. Together, this could cause an increase in the frequency of leukemic cells and a resistance to apoptosis in response to treatment.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4246-4246
Author(s):  
Toshihiro Iwasaki ◽  
Akira Katsumi ◽  
Hitoshi Kiyoi ◽  
Ryohei Tanizaki ◽  
Miki Kobayashi ◽  
...  

Abstract The Rho family of small GTPases including Rho, Rac, and Cdc42 has been well characterized as molecular switches to transduce signals from plasma membrane to the downstream effectors. Rac1 and Rac2 are known to regulate engraftment and mobilization of hematopoietic stem cells. RhoH, a member of the Rho family, is specifically expressed in hematopoietic cells, and has been reported to inhibit the cell adhesion through regulating Rac and αLβ2 integrin. As RhoH is GTPase deficient and constitutively active, GTP-bound form, the activity of RhoH is directly related to the level of expression. Previous reports demonstrated the aberrant somatic hypermutation of RhoH gene as a novel mechanism of genetic lesion in diffuse large B-cell lymphoma, possibly through the deregulated expression although the role of the RhoH on leukemia is largely unknown. Here we have screened for the expression level of RhoH gene in the bone marrow samples from 90 previously untreated acute myeloid leukemia cases by using a real-time fluorescence detection method. The expression level of RhoH was neither related to the FAB classification, CR rate, nor WBC counts. In addition, the RhoH expression was not associated with the known gene mutations such as N-Ras, FLT3, and p53. However, the multivariate analysis demonstrated that low expression of RhoH was the independent unfavorable prognostic factor for overall and disease free survival (p=0.0028 and 0.003, respectively). RhoH did not affect the affinity modulation of α4β1 integrin, however, RhoH negatively regulate Rac activation in our system, suggesting that RhoH might work as a proapoptic molecule through Rac deactivation. Further investigations would be required to clarify the biological roles of RhoH on leukemic cells.


Blood ◽  
1995 ◽  
Vol 86 (8) ◽  
pp. 2906-2912 ◽  
Author(s):  
D Haase ◽  
M Feuring-Buske ◽  
S Konemann ◽  
C Fonatsch ◽  
C Troff ◽  
...  

Acute myeloid leukemia (AML) is a heterogenous disease according to morphology, immunophenotype, and genetics. The retained capacity of differentiation is the basis for the phenotypic classification of the bulk population of leukemic blasts and the identification of distinct subpopulations. Within the hierarchy of hematopoietic development and differentiation it is still unknown at which stage the malignant transformation occurs. It was our aim to analyze the potential involvement of cells with the immunophenotype of pluripotent stem cells in the leukemic process by the use of cytogenetic and cell sorting techniques. Cytogenetic analyses of bone marrow aspirates were performed in 13 patients with AML (11 de novo and 2 secondary) and showed karyotype abnormalities in 10 cases [2q+, +4, 6p, t(6:9), 7, +8 in 1 patient each and inv(16) in 4 patients each]. Aliquots of the samples were fractionated by fluorescence-activated cell sorting of CD34+ cells. Two subpopulations, CD34+/CD38-(early hematopoietic stem cells) and CD34+/CD38+ (more mature progenitor cells), were screened for karyotype aberations as a marker for leukemic cells. Clonal abnormalities and evaluable metaphases were found in 8 highly purified CD34+/CD38-populations and in 9 of the CD34+/CD38-specimens, respectively. In the majority of cases (CD34+/CD38-, 6 of 8 informative samples; CD34+/CD38+, 5 of 9 informative samples), the highly purified CD34+ specimens also contained cytogenetically normal cells. Secondary, progression-associated chromosomal changes (+8, 12) were identified in the CD34+/CD38-cells of 2 patients. We conclude that clonal karyotypic abnormalities are frequently found in the stem cell-like (CD34+/CD38-) and more mature (CD34+/CD38+) populations of patients with AML, irrespective of the phenotype of the bulk population of leukemic blasts and of the primary or secondary character of the leukemia. Our data suggest that, in AML, malignant transformation as well as disease progression may occur at the level of CD34+/CD38-cells with multilineage potential.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 42-43
Author(s):  
Alexander E. Perl ◽  
Qiaoyang Lu ◽  
Alan Fan ◽  
Nahla Hasabou ◽  
Erhan Berrak ◽  
...  

Background: Gilteritinib is approved for patients (pts) with relapsed/refractory (R/R) FLT3-mutated acute myeloid leukemia (AML), based on findings from the phase 3 ADMIRAL trial (Perl AE, et al. N Engl J Med. 2019). A phase 3 trial, QuANTUM-R, demonstrated the benefit of quizartinib in pts with R/R AML with FLT3 internal tandem duplication (FLT3-ITD) mutations (Cortes JE, et al. Lancet Oncol. 2019). Although eligibility criteria across both studies were similar, QuANTUM-R was more stringent as to prior therapy intensity and remission duration, which potentially enriched for higher-risk pts. We sought to describe outcomes from ADMIRAL among pts who otherwise met eligibility for QuANTUM-R. Methods: In this post-hoc analysis, a subset of pts from ADMIRAL were matched with R/R FLT3-ITD+ AML pts from QuANTUM-R on the basis of baseline characteristics and prior treatment criteria. Matched pts were either refractory to initial anthracycline-based chemotherapy or had relapsed ≤6 mos after achieving composite complete remission (CRc) with an anthracycline-based regimen. Results: Overall, 218 pts with R/R FLT3-ITD+ AML in the ADMIRAL trial (gilteritinib, n=140; salvage chemotherapy [SC], n=78) were matched with the QuANTUM-R intention-to treat (ITT) population (N=367; quizartinib, n=245; SC, n=122). Proportions of pts preselected for high-intensity SC were 66% (n=143/218) in the matched ADMIRAL ITT population and 77% (n=281/367) in the QuANTUM-R ITT populations. Demographic and baseline characteristics of the matched ADMIRAL ITT population and QuANTUM-R ITT population were similar. Median durations of exposure to gilteritinib and quizartinib were 3.8 mos and 3.2 mos, respectively, and median number of treatment cycles received were five and four, respectively. Rates of hematopoietic stem cell transplantation (HSCT) were similar in pts treated with gilteritinib (35%; n=49/140) or quizartinib (32%; n=78/245), as were the proportions of pts who resumed gilteritinib (23%; n=32/140) or quizartinib (20%; n=48/245) therapy post-HSCT. Median overall survival (OS) in pts treated with gilteritinib or quizartinib was longer than that observed with SC. After a median follow-up of 17.4 mos, median OS was 10.2 mos with gilteritinib versus 5.6 mos with SC (hazard ratio [HR]=0.573 [95% CI: 0.403, 0.814]; one-sided nominal P=0.0008). After a median follow-up of 23.5 mos, median OS with quizartinib was 6.2 mos versus 4.7 mos with SC (HR=0.76 [95% CI: 0.58-0.98]; one-sided P=0.02). After censoring for HSCT, median OS was 9.3 mos with gilteritinib versus 5.5 mos with SC (HR=0.525 [95% CI: 0.356-0.775]; nominal one-sided P=0.0005), and 5.7 mos versus 4.6 mos with quizartinib versus SC, respectively (HR=0.79 [95% CI: 0.59, 1.05]; one-sided P=0.05). In both QuANTUM-R and matched ADMIRAL populations, the survival benefits of quizartinib and gilteritinib compared with SC were maintained across multiple subgroups, including high FLT3-ITD allelic ratio subsets. Compared with SC, high CRc rates were observed in pts treated with either gilteritinib (57%; n=80/140) or quizartinib (48%; n=118/245). The complete remission (CR) rate with gilteritinib was 23% (n=32/140), whereas the CR rate with quizartinib was 4% (n=10/245) (Table). Median time to achieve CRc was 1.8 mos with gilteritinib and 1.1 mos with quizartinib, median duration of CRc was 5.5 mos with gilteritinib and 2.8 mos with quizartinib. The safety profiles of gilteritinib and quizartinib were generally similar, though aspartate or alanine aminotransferase elevations (any grade) were more frequent with gilteritinib (41-44%) than quizartinib (≤13%), whereas neutropenia (14% vs 34%, respectively), fatigue (24% vs 39%, respectively), and prolonged QT intervals (9% vs 27%, respectively) were more frequent with quizartinib. Conclusions: In pts with R/R FLT3-ITD+ AML and similar baseline characteristics, both gilteritinib and quizartinib were generally well tolerated and associated with improved survival and treatment response compared with SC. Responses to gilteritinib and quizartinib, as measured by CRc, were similar; blood count recovery varied between the two FLT3 inhibitors. Although cross-study comparisons have substantial limitations, the findings suggest that while remission is achieved faster with quizartinib, response may be more durable and survival potentially longer with gilteritinib. Disclosures Perl: Syndax: Consultancy, Honoraria; Leukemia & Lymphoma Society, Beat AML: Consultancy; Novartis: Honoraria, Other, Research Funding; Agios: Consultancy, Honoraria, Other; Jazz: Honoraria, Other; FORMA Therapeutics: Consultancy, Honoraria, Other; Daiichi Sankyo: Consultancy, Honoraria, Other: Writing/editorial support, travel costs for meetings, Research Funding; FUJIFILM Pharmaceuticals USA, Inc: Research Funding; New Link Genetics: Honoraria, Other; Arog Pharmaceuticals Inc: Other: uncompensated consulting, travel costs for meetings; Actinium Pharmaceuticals Inc: Consultancy, Honoraria, Research Funding; Biomed Valley Discoveries: Research Funding; Astellas: Consultancy, Honoraria, Other: writing/editorial support, travel costs for meeting presentations related to study, Research Funding; Bayer HealthCare Pharmaceuticals: Research Funding; AbbVie Inc: Consultancy, Honoraria, Other, Research Funding; Takeda: Honoraria, Other: Travel costs for meeting; Loxo Oncology Inc, a wholly owned subsidiary of Eli Lilly & Company: Consultancy, Honoraria, Other. Lu:Astellas: Current Employment. Fan:Astellas Pharma: Current Employment. Hasabou:Astellas Pharma: Current Employment. Berrak:Astellas: Current Employment. Tiu:Eli Lilly & Company: Current equity holder in publicly-traded company, Ended employment in the past 24 months; Astellas Pharma Global Development: Current Employment.


2020 ◽  
Vol 29 (3) ◽  
pp. 387-397
Author(s):  
Yangli Zhao ◽  
Tingjuan Zhang ◽  
Yangjing Zhao ◽  
Jingdong Zhou

BACKGROUND: The runt-related transcription factor family (RUNXs) including RUNX1, RUNX2, and RUNX3 are key transcriptional regulators in normal hematopoiesis. RUNXs dysregulations caused by aberrant expression or mutation are frequently seen in various human cancers especially in acute myeloid leukemia (AML). OBJECTIVE: We systemically analyzed the expression of RUNXs and their relationship with clinic-pathological features and prognosis in AML patients. METHODS: Expression of RUNXs was analyzed between AML patients and normal controls from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) projects. Correlations between RUNXs expression and clinical features together with survival were further analyzed. RESULTS: All RUNXs expression in AML patients was significantly increased as compared with controls. RUNXs expression was found to be significantly associated with genetic abnormalities such as RUNX1 mutation, t(8;21) and inv(16)/t(16;16). By Kaplan-Meier analysis, only RUNX3 overexpression was associated with shorter overall survival (OS) and disease-free survival (DFS) among non-M3 AML patients. Notably, in high RUNX3 expression groups, patients received hematopoietic stem cell transplantation (HSCT) had markedly better OS and DFS than patients without HSCT among both all AML and non-M3 AML. In low RUNX3 expression groups, there were no significant differences in OS and DFS between HSCT and non-HSCT groups among both all AML and non-M3 AML. In addition, a total of 835 differentially expressed genes and 69 differentially expressed microRNAs were identified to be correlated with RUNX3 expression in AML. CONCLUSION: RUNXs overexpression was a frequent event in AML, and was closely associated with diverse genetic alterations. Moreover, RUNX3 expression may be associated with clinical outcome, and helpful for guiding treatment choice between HSCT and chemotherapy in AML.


Blood ◽  
1999 ◽  
Vol 93 (11) ◽  
pp. 3678-3684 ◽  
Author(s):  
E.L. Sievers ◽  
F.R. Appelbaum ◽  
R.T. Spielberger ◽  
S.J. Forman ◽  
D. Flowers ◽  
...  

Abstract Leukemic blast cells express the CD33 antigen in most patients with acute myeloid leukemia (AML), but this antigen is not expressed by hematopoietic stem cells. We conducted a study to determine whether normal hematopoiesis could be restored in patients with AML by selective ablation of cells expressing the CD33 antigen. In a dose escalation study, 40 patients with relapsed or refractory CD33+ AML were treated with an immunoconjugate (CMA-676) consisting of humanized anti-CD33 antibody linked to the potent antitumor antibiotic calicheamicin. The capacity of leukemic cells to efflux 3,3’-diethyloxacarbocyanine iodide (DiOC2) was used to estimate pretreatment functional drug resistance. Leukemia was eliminated from the blood and marrow of 8 (20%) of the 40 patients; blood counts returned to normal in three (8%) patients. A high rate of clinical response was observed in leukemias characterized by low dye efflux in vitro. Infusions of CMA-676 were generally well tolerated, and a postinfusion syndrome of fever and chills was the most common toxic effect. Two patients who were treated at the highest dose level (9 mg/m2) were neutropenic >5 weeks after the last dose of CMA-676. These results show that an immunoconjugate targeted to CD33 can selectively ablate malignant hematopoiesis in some patients with AML.


2020 ◽  
Vol 4 (8) ◽  
pp. 1722-1736 ◽  
Author(s):  
Ayaka Yamaoka ◽  
Mikiko Suzuki ◽  
Saori Katayama ◽  
Daiki Orihara ◽  
James Douglas Engel ◽  
...  

Abstract Chromosomal rearrangements between 3q21 and 3q26 elicit high-risk acute myeloid leukemia (AML), which is often associated with elevated platelet and megakaryocyte (Mk) numbers. The 3q rearrangements reposition a GATA2 enhancer near the EVI1 (or MECOM) locus, which results in both EVI1 overexpression and GATA2 haploinsufficiency. However, the mechanisms explaining how the misexpression of these 2 genes individually contribute to leukemogenesis are unknown. To clarify the characteristics of differentiation defects caused by EVI1 and GATA2 misexpression and to identify the cellular origin of leukemic cells, we generated a system to monitor both inv(3) allele-driven EVI1 and Gata2 expression in 3q-rearranged AML model mice. A cell population in which both EVI1 and Gata2 were highly induced appeared in the bone marrows before the onset of frank leukemia. This population had acquired serial colony-forming potential. Because hematopoietic stem/progenitor cells (HSPCs) and Mks were enriched in this peculiar population, we analyzed the independent EVI1 and GATA2 contributions to HSPC and Mk. We found that inv(3)-driven EVI1 promotes accumulation of Mk-biased and myeloid-biased progenitors, Mks, and platelets, and that Gata2 heterozygous deletion enhanced Mk-lineage skewing of EVI1-expressing progenitors. Notably, inv(3)-directed EVI1 expression and Gata2 haploinsufficient expression cooperatively provoke a leukemia characterized by abundant Mks and platelets. These hematological features of the mouse model phenocopy those observed in human 3q AML. On the basis of these results, we conclude that inv(3)-driven EVI1 expression in HSPCs and Mks collaborates with Gata2 haploinsufficiency to provoke Mk-lineage skewing and leukemogenesis with excessive platelets, thus mimicking an important feature of human AML.


2019 ◽  
Vol 143 (1) ◽  
pp. 9-18 ◽  
Author(s):  
Yimin Zhang ◽  
Haihui Gu ◽  
Qi Chen ◽  
Ying Zhang ◽  
Hui Cheng ◽  
...  

Background: Aggressive growth of primitive and immature cells in the bone marrow results in reductions in megakaryocyte and platelet (PLT) counts, leading to thrombocytopenia in acute myeloid leukemia (AML). However, not all AML patients show thrombocytopenia at the time of diagnosis, and the association of PLT count with patient survival is largely unknown. Methods: A retrospective study was performed to determine PLT counts at diagnosis in the peripheral blood in 291 newly diagnosed AML patients and assess the association of PLT counts with the overall survival (OS) and disease-free survival (DFS) of these patients. Results: Low PLT counts (≤40 × 109/L) were associated with better outcomes for the whole cohort (5-year OS, 55.1 ± 3.8 vs. 35.3 ± 3.5%, p < 0.001; 5-year DFS, 49.1 ± 3.8 vs. 25.7 ± 4.0%, p < 0.001) and intermediate-risk patients (5-year OS, 64.5 ± 5.4 vs. 41.0 ± 4.8%, p < 0.001; 5-year DFS, 60.8 ± 5.6 vs. 28.6 ± 5.6%, p < 0.001). Moreover, low PLT counts were related to deeper molecular remission. Low PLT counts correlated with better survival of intermediate-risk AML patients treated with chemotherapy only. Allogeneic hematopoietic stem cell transplantation attenuated the negative impact of high PLT counts on the survival of intermediate-risk patients. Furthermore, univariate and multivariate analyses demonstrated that PLT count at diagnosis was an independent prognostic factor for intermediate-risk AML. Conclusion: PLT count at diagnosis predicts survival for patients with intermediate-risk AML.


Sign in / Sign up

Export Citation Format

Share Document