scholarly journals Time-resolved flow field investigation in an industrial centrifugal compressor application involving TR-PIV synchronized with unsteady pressure measurements

Author(s):  
Joachim Klinner ◽  
Melanie Voges ◽  
Michael Schroll ◽  
Alessandro Bassetti ◽  
Christian Willert

We report on combined velocity and unsteady pressure measurements obtained on an radial compressor with vaneless diffuser and asymmetric volute. Time-resolved PIV recordings were acquired at 26 kHz both upstream of the impeller as well as within the vaneless diffusor at several rotation speeds at clean conditions and prior to the onset of instabilities within the rotor. The velocity data was acquired with a high-repetition rate, double-pulse laser system consisting of two combined DPSS lasers and a high-speed CMOS camera that was synchronized with multi-point unsteady pressure measurements. Details on the facility, the utilized instrumentation and data processing are provided with particular focus on the spectral and coherence analysis. Power spectra obtained from time records of the inlet velocity and unsteady pressure reveal an increase of low-frequency fluctuations below the blade passing frequency and the occurrence of a mode-locked behaviour indicating the presence of rotating instabilities. High levels of correlation between velocity and unsteady pressure signals not only confirm the temporal coherence of the acquired data but also reveal a direct coupling between flow field and pressure signature that is more prominent upstream of the rotor rather than in the diffusor.

Author(s):  
Antoine Dazin ◽  
Patrick Dupont ◽  
Guy Caignaert ◽  
Ge´rard Bois

The paper refers to the behavior of a radial flow pump vaneless diffuser during a starting period. Results obtained with a 1D numerical model are compared with some new experimental data which have been obtained using 2D/3C High repetition rate PIV within the diffuser coupled with unsteady pressure measurements. These tests have been performed on a test rig with a radial impeller matched with a vaneless diffuser. They have been made in air, on a test rig well adapted for studies on interactions between impeller and diffuser, as well as for the use of optical methods and especially Particle Image Velocimetry (PIV) as there is no volute downstream of the diffuser. The present study refers to new experiments combining pressure measurements and 2D/3C High Speed PIV at partial flow rates within a vaneless diffuser with a large outlet radius. Four Bru¨el & Kjaer condenser microphones are used for the unsteady pressure measurements. They were flush mounted on the shroud side of the diffuser wall and on the suction pipe of the pump. The sampling frequency was 2048 Hz. For PIV measurements, the laser sheet was generated by a Darwin PIV ND:YLF Laser at three heights within the diffuser. PIV snapshots have been recorded by two identical CMOS cameras. A home made software has been used for the images treatment. The results consist in fields of 80 × 120 mm2 and 81 × 125 velocity vectors with a temporal resolution of 250 velocity maps per second. For each flow rate and each laser sheet height in the diffuser, two acquisitions of about 1500 velocity maps have been realised. The experimental data are compared with the ones provided by a 1D transient model of the flow within the diffuser.


Author(s):  
J. F. Brouckaert ◽  
N. Van de Wyer ◽  
B. Farkas ◽  
F. Ullmann ◽  
J. Desset ◽  
...  

The experimental investigation of the unsteady flow field in a single stage low pressure axial compressor designed for a counter-rotating turbofan engine architecture is presented in this paper. The rotor casing was instrumented with fast response pressure transducers to perform a detailed survey of the tip flow features during stable operation, near stall and during stall. Tests were performed at two different Reynolds numbers representative of cruise and take-off conditions in the VKI-R4 closed loop compressor test rig. Simultaneous time-resolved measurements with a miniature fast response total pressure probe were performed by radial traverses at the rotor exit to support the tip flow field investigation. The casing measurements allow to map the direction and extension of the tip leakage vortex. The flow path measurements show its extension at the exit of the rotor blade passage and its evolution as throttling is increased towards the compressor stability limit. These experimental results are discussed and compared to CFD simulations, showing good agreement. Stall inception and rotating stall patterns are investigated as well and described in this paper. They are based both on hot wire measurements and on the casing unsteady pressure measurements.


2021 ◽  
Vol 62 (3) ◽  
Author(s):  
Joachim Klinner ◽  
Alexander Hergt ◽  
Sebastian Grund ◽  
Christian E. Willert

AbstractThe dynamics of a transonic buffet flow on the suction side of a highly loaded 2-D compressor blade model is investigated at a chord-based Reynolds number of $$1.4 \times 10^6$$ 1.4 × 10 6 and an inlet Mach number of 1.05. Near stall the detached bow shock exhibits pronounced modal shock oscillations at buffet frequencies of $${\omega ^*}=2\pi f c / U_1=2.27$$ ω ∗ = 2 π f c / U 1 = 2.27 which are not related to any structural aeroelastic modes. High-speed PIV at several stations along the chord provides chordwise velocity spectra and wave propagation velocities of shock-induced perturbations. For this purpose, a double-pulse laser system with a high-repetition rate was set up consisting of two combined DPSS lasers. This enables time-resolved PIV using frame straddling at up to 100 kfps and pulse separations down to 800 ns. Synchronized high-speed shadowgraph imaging simultaneously locates the position of the bow shock. Based on cross-correlations between velocity time records at two points and between velocity and shock position, the propagation velocity of the modal perturbations is determined upstream and downstream from the shock. The measured data indicate that feedback occurs between a region immediately downstream of the shock foot and a plane upstream of the shock, up to which transverse velocity disturbances are convected. This observation is contrary to Lee’s model Lee (AIAA J 28(5):942–944, 1990) which describes self-sustained shock-buffet as a consequence of shock–trailing edge interactions. Graphic Abstract


2006 ◽  
Vol 129 (6) ◽  
pp. 731-736 ◽  
Author(s):  
Christopher E. Brennen

Recent testing of high-speed cavitating turbopump inducers has revealed the existence of more complex instabilities than the previously recognized cavitating surge and rotating cavitation. This paper explores one such instability that is uncovered by considering the effect of a downstream asymmetry, such as a volute on a rotating disturbance similar to (but not identical to) that which occurs in rotating cavitation. The analysis uncovers a new instability that may be of particular concern because it occurs at cavitation numbers well above those at which conventional surge and rotating cavitation occur. This means that it will not necessarily be avoided by the conventional strategy of maintaining a cavitation number well above the performance degradation level. The analysis considers a general surge component at an arbitrary frequency ω present in a pump rotating at frequency Ω and shows that the existence of a discharge asymmetry gives rise not only to beat components at frequencies, Ω−ω and Ω+ω (as well as higher harmonics), but also to rotating as well as surge components at all these frequencies. In addition, these interactions between the frequencies and the surge and rotating modes lead to “coupling impedances” that effect the dynamics of each of the basic frequencies. We evaluate these coupling impedances and show not only that they can be negative (and thus promote instability) but also are most negative for surge frequencies just a little below Ω. This implies potential for an instability involving the coupling of a surge mode with a frequency around 0.9Ω and a low-frequency rotating mode about 0.1Ω. We also examine how such an instability would be manifest in unsteady pressure measurements at the inlet to and discharge from a cavitating pump and establish a “footprint” for the recognition of such an instability.


2017 ◽  
Vol 122 (1247) ◽  
pp. 83-103 ◽  
Author(s):  
R. Saravanan ◽  
S.L.N. Desikan ◽  
T.M. Muruganandam

ABSTRACTThe present study investigates the behaviour of the shock train in a typical Ramjet engine under the influence of shock and expansion waves at the entry of a low aspect ratio (1:0.75) rectangular duct/isolator at supersonic Mach number (M = 1.7). The start/unstart characteristics are investigated through steady/unsteady pressure measurements under different back and dynamic pressures while the shock train dynamics are captured through instantaneous Schlieren flow visualisation. Two parameters, namely pressure recovery and the pressure gradient, is derived to assess the duct/isolator performance. For a given back pressure, with maximum blockage (9% above nominal), the duct/isolator flow is established when the dynamic pressure is increased by 23.5%. The unsteady pressure measurements indicate different scales of eddies above 80 Hz (with and without flap deflection). Under the no flap deflection (no back pressure) condition, the maximum fluctuating pressure component is 0.01% and 0.1% of the stagnation pressure at X/L = 0.03 (close to the entry of the duct) and X/L = 0.53 (middle of the duct), respectively. Once the flap is deflected (δ = 8°), decay in eddies by one order is noticed. Further increase in back pressure (δ ≥ 11°) leads the flow to unstart where eddies are observed to be disappeared.


2021 ◽  
Author(s):  
Richard W. Jackson ◽  
Hui Tang ◽  
James A. Scobie ◽  
Oliver J. Pountney ◽  
Carl M. Sangan ◽  
...  

Abstract The flow in the heated rotating cavity of an aero-engine compressor is driven by buoyancy forces, which result in pairs of cyclonic and anticyclonic vortices. The resultant cavity flow field is three-dimensional, unsteady and unstable, which makes it challenging to model the flow and heat transfer. In this paper, properties of the vortex structures are determined from novel unsteady pressure measurements collected on the rotating disc surface over a range of engine-representative parameters. These measurements are the first of their kind with practical significance to the engine designer and for validation of computational fluid dynamics. One cyclonic/anticyclonic vortex pair was detected over the experimental range, despite the measurement of harmonic modes in the frequency spectra at low Rossby numbers. It is shown that these modes were caused by unequal size vortices, with the cyclonic vortex the larger of the pair. The structures slipped relative to the discs at a speed typically around 10% to 15% of that of the rotor, but the speed of precession was often unsteady. The coherency, strength and slip of the vortex pair increased with the buoyancy parameter, due to the stronger buoyancy forces, but they were largely independent of the rotational Reynolds number.


Sign in / Sign up

Export Citation Format

Share Document