Study of the flow field behind a transonic axial compressor rotor using laser-anemometry and unsteady pressure measurements

1979 ◽  
Author(s):  
J. F. Brouckaert ◽  
N. Van de Wyer ◽  
B. Farkas ◽  
F. Ullmann ◽  
J. Desset ◽  
...  

The experimental investigation of the unsteady flow field in a single stage low pressure axial compressor designed for a counter-rotating turbofan engine architecture is presented in this paper. The rotor casing was instrumented with fast response pressure transducers to perform a detailed survey of the tip flow features during stable operation, near stall and during stall. Tests were performed at two different Reynolds numbers representative of cruise and take-off conditions in the VKI-R4 closed loop compressor test rig. Simultaneous time-resolved measurements with a miniature fast response total pressure probe were performed by radial traverses at the rotor exit to support the tip flow field investigation. The casing measurements allow to map the direction and extension of the tip leakage vortex. The flow path measurements show its extension at the exit of the rotor blade passage and its evolution as throttling is increased towards the compressor stability limit. These experimental results are discussed and compared to CFD simulations, showing good agreement. Stall inception and rotating stall patterns are investigated as well and described in this paper. They are based both on hot wire measurements and on the casing unsteady pressure measurements.


Author(s):  
André Inzenhofer ◽  
Cyril Guinet ◽  
Andreas Hupfer ◽  
Bernd Becker ◽  
Patrick Grothe ◽  
...  

Tip blowing and axial slot casing treatments have shown their ability to enhance the stability of a transonic axial compressor with different effects on efficiency. For an effective application of these casing treatments, a good knowledge of the influence of the casing treatment on the rotor flow field is important. There is still a need for more detailed investigations, in order to understand the interaction between the treatment and the near casing 3D flow field. For transonic compressor rotors this interaction is more complex, as super- and subsonic flow regions alternate while interacting with the casing treatment. In the present study, an axial slot and a tip blowing casing treatment, which have been developed and optimized for the same tip critical transonic axial compressor rotor (reference rotor) by Streit et al. [1] and Guinet et al. [2], are subject of the investigation. Both casing treatment types showed their capabilities to enhance the compressor stability without losing by means of CFD simulations. Since the higher compressor stability allows a higher blade loading, Streit et al. reduced the blade number of the rotor. Thus, the efficiency was increased due to the reduction of friction losses. However, applying the tip blowing casing treatment to the reduced rotor shows a negative effect on the efficiency. Both casing treatment types recirculate flow from a downstream to an upstream location of the rotor and reinject it to enhance the near casing flow field. Although the working principle of the two casing treatment types are similar, the transfer of the casing treatments from the reference to the reduced rotor show different trends in efficiency. Therefore, the effect of recirculation cannot explain the difference in efficiency. Hence, applying axial slots must include additional flow features, compared to recirculation channels. Compensating effects as in circumferential groove casing treatments and other flow interactions between the near casing flow field and the slot flow are considered. These additional mechanisms of the axial slot casing treatment will be identified and isolated by comparing the two different casing treatment types. The numerical simulations are carried out on a 1.5 stage transonic axial compressor using URANS simulations.


1978 ◽  
Vol 100 (2) ◽  
pp. 279-286 ◽  
Author(s):  
R. J. Dunker ◽  
P. E. Strinning ◽  
H. B. Weyer

The flow field ahead, within, and behind the rotor of a transonic axial compressor designed for a total pressure ratio of 1.51 at a relative tip Mach number of 1.4 has been studied in detail using an advanced laser velocimeter. The tests were carried out at 70 and 100 percent design speed (20,260 rpm) and equivalent mass flows corresponding to the point of maximum isentropic efficiency. The tests yielded quite complete data on the span- and gap-wise velocity profiles, on the three-dimensional shock waves in and outside of the rotor blade channels, and on the blade wakes. Some of the experimental results will be submitted, discussed, and compared to corresponding analytical data of a through-flow calculation. The comparison reveals considerable discrepancies inside the blade row between the two-dimensional calculation and the experiments primarily due to the loss and deviation correlations used, as well as to the distribution of losses and flow angles inside the blade channels.


Author(s):  
Joachim Klinner ◽  
Melanie Voges ◽  
Michael Schroll ◽  
Alessandro Bassetti ◽  
Christian Willert

We report on combined velocity and unsteady pressure measurements obtained on an radial compressor with vaneless diffuser and asymmetric volute. Time-resolved PIV recordings were acquired at 26 kHz both upstream of the impeller as well as within the vaneless diffusor at several rotation speeds at clean conditions and prior to the onset of instabilities within the rotor. The velocity data was acquired with a high-repetition rate, double-pulse laser system consisting of two combined DPSS lasers and a high-speed CMOS camera that was synchronized with multi-point unsteady pressure measurements. Details on the facility, the utilized instrumentation and data processing are provided with particular focus on the spectral and coherence analysis. Power spectra obtained from time records of the inlet velocity and unsteady pressure reveal an increase of low-frequency fluctuations below the blade passing frequency and the occurrence of a mode-locked behaviour indicating the presence of rotating instabilities. High levels of correlation between velocity and unsteady pressure signals not only confirm the temporal coherence of the acquired data but also reveal a direct coupling between flow field and pressure signature that is more prominent upstream of the rotor rather than in the diffusor.


Author(s):  
Yanfei Gao ◽  
Yangwei Liu ◽  
Luyang Zhong ◽  
Jiexuan Hou ◽  
Lipeng Lu

AbstractThe standard k-ε model (SKE) and the Reynolds stress model (RSM) are employed to predict the tip leakage flow (TLF) in a low-speed large-scale axial compressor rotor. Then, a new research method is adopted to “freeze” the turbulent kinetic energy and dissipation rate of the flow field derived from the RSM, and obtain the turbulent viscosity using the Boussinesq hypothesis. The Reynolds stresses and mean flow field computed on the basis of the frozen viscosity are compared with the results of the SKE and the RSM. The flow field in the tip region based on the frozen viscosity is more similar to the results of the RSM than those of the SKE, although certain differences can be observed. This finding indicates that the non-equilibrium turbulence transport nature plays an important role in predicting the TLF, as well as the turbulence anisotropy.


2017 ◽  
Vol 122 (1247) ◽  
pp. 83-103 ◽  
Author(s):  
R. Saravanan ◽  
S.L.N. Desikan ◽  
T.M. Muruganandam

ABSTRACTThe present study investigates the behaviour of the shock train in a typical Ramjet engine under the influence of shock and expansion waves at the entry of a low aspect ratio (1:0.75) rectangular duct/isolator at supersonic Mach number (M = 1.7). The start/unstart characteristics are investigated through steady/unsteady pressure measurements under different back and dynamic pressures while the shock train dynamics are captured through instantaneous Schlieren flow visualisation. Two parameters, namely pressure recovery and the pressure gradient, is derived to assess the duct/isolator performance. For a given back pressure, with maximum blockage (9% above nominal), the duct/isolator flow is established when the dynamic pressure is increased by 23.5%. The unsteady pressure measurements indicate different scales of eddies above 80 Hz (with and without flap deflection). Under the no flap deflection (no back pressure) condition, the maximum fluctuating pressure component is 0.01% and 0.1% of the stagnation pressure at X/L = 0.03 (close to the entry of the duct) and X/L = 0.53 (middle of the duct), respectively. Once the flap is deflected (δ = 8°), decay in eddies by one order is noticed. Further increase in back pressure (δ ≥ 11°) leads the flow to unstart where eddies are observed to be disappeared.


Sign in / Sign up

Export Citation Format

Share Document