Dampers of Pressure Fluctuations in the Pipeline Systems of Power Plants and Production Machines

2020 ◽  
Vol 24 (1) ◽  
pp. 14-18
Author(s):  
N.S. Chernov

Problems and ways to reduce pressure fluctuations in the piping systems of power plants and production machines are considered. The theoretical foundations of vibration damping are described. The developed device designs are given to reduce pressure fluctuations in pipeline systems. Studied and experimentally tested their effectiveness in comparison with foreign counterparts. The use of designed and implemented dampers to reduce noise and vibration, increase the efficiency, reliability and service life of industrial equipment, prevent fire hazard.

Author(s):  
Robert A. Leishear

Water hammers, or fluid transients, compress flammable gasses to their autognition temperatures in piping systems to cause fires or explosions. While this statement may be true for many industrial systems, the focus of this research are reactor coolant water systems (RCW) in nuclear power plants, which generate flammable gasses during normal operations and during accident conditions, such as loss of coolant accidents (LOCA’s) or reactor meltdowns. When combustion occurs, the gas will either burn (deflagrate) or explode, depending on the system geometry and the quantity of the flammable gas and oxygen. If there is sufficient oxygen inside the pipe during the compression process, an explosion can ignite immediately. If there is insufficient oxygen to initiate combustion inside the pipe, the flammable gas can only ignite if released to air, an oxygen rich environment. This presentation considers the fundamentals of gas compression and causes of ignition in nuclear reactor systems. In addition to these ignition mechanisms, specific applications are briefly considered. Those applications include a hydrogen fire following the Three Mile Island meltdown, hydrogen explosions following Fukushima Daiichi explosions, and on-going fires and explosions in U.S nuclear power plants. Novel conclusions are presented here as follows. 1. A hydrogen fire was ignited by water hammer at Three Mile Island. 2. Hydrogen explosions were ignited by water hammer at Fukushima Daiichi. 3. Piping damages in U.S. commercial nuclear reactor systems have occurred since reactors were first built. These damages were not caused by water hammer alone, but were caused by water hammer compression of flammable hydrogen and resultant deflagration or detonation inside of the piping.


Author(s):  
Bruce A. Young ◽  
Sang-Min Lee ◽  
Paul M. Scott

As a means of demonstrating compliance with the United States Code of Federal Regulations 10CFR50 Appendix A, General Design Criterion 4 (GDC-4) requirement that primary piping systems for nuclear power plants exhibit an extremely low probability of rupture, probabilistic fracture mechanics (PFM) software has become increasingly popular. One of these PFM codes for nuclear piping is Pro-LOCA which has been under development over the last decade. Currently, Pro-LOCA is being enhanced under an international cooperative program entitled PARTRIDGE-II (Probabilistic Analysis as a Regulatory Tool for Risk-Informed Decision GuidancE - Phase II). This paper focuses on the use of a pre-defined set of base-case inputs along with prescribed variation in some of those inputs to determine a comparative set of sensitivity analyses results. The benchmarking case was a circumferential Primary Water Stress Corrosion Crack (PWSCC) in a typical PWR primary piping system. The effects of normal operating loads, temperature, leak detection, inspection frequency and quality, and mitigation strategies on the rupture probability were studied. The results of this study will be compared to the results of other PFM codes using the same base-case and variations in inputs. This study was conducted using Pro-LOCA version 4.1.9.


Author(s):  
Se´bastien Caillaud ◽  
Rene´-Jean Gibert ◽  
Pierre Moussou ◽  
Joe¨l Cohen ◽  
Fabien Millet

A piping system of French nuclear power plants displays large amplitude vibrations in particular flow regimes. These troubles are attributed to cavitation generated by single-hole orifices in depressurized flow regimes. Real scale experiments on high pressure test rigs and on-site tests are then conducted to explain the observed phenomenon and to find a solution to reduce pipe vibrations. The first objective of the present paper is to analyze cavitation-induced vibrations in the single-hole orifice. It is then shown that the orifice operates in choked flow with supercavitation, which is characterized by a large unstable vapor pocket. One way to reduce pipe vibrations consists in suppressing the orifices and in modifying the control valves. Three technologies involving a standard trim and anti-cavitation trims are tested. The second objective of the paper is to analyze cavitation-induced vibrations in globe-style valves. Cavitating valves operate in choked flow as the orifice. Nevertheless, no vapor pocket appears inside the pipe and no unstable phenomenon is observed. The comparison with an anti-cavitation solution shows that cavitation reduction has no impact on low frequency excitation. The effect of cavitation reduction on pipe vibrations, which involve essentially low frequencies, is then limited and the first solution, which is the standard globe-style valve installed on-site, leads to acceptable pipe vibrations. Finally, this case study may have consequences on the design of piping systems. First, cavitation in orifices must be limited. Choked flow in orifices may lead to supercavitation, which is here a damaging and unstable phenomenon. The second conclusion is that the reduction of cavitation in globe-style valve in choked flow does not reduce pipe vibrations. The issue is then to limit cavitation erosion of valve trims.


Author(s):  
Nikolay A. Makhutov ◽  
Mikhail M. Gadenin ◽  
Sergey V. Maslov ◽  
Dmitry O. Reznikov ◽  
Sergey N. Pichkov ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5258
Author(s):  
Cyril Zimmer ◽  
Yashashwini Nikhitha Rallabandi ◽  
Klaus Szielasko ◽  
Christian Eichheimer ◽  
Michael Luke ◽  
...  

Reactor safety research aims at the safe operation of nuclear power plants during their service life. In this respect, Fraunhofer IZFP’s micromagnetic multiparameter, microstructure, and stress analysis (3MA) has already made a significant contribution to the understanding of different aging mechanisms of component materials and their characterization. The basis of 3MA is the fact that microstructure and mechanical stress determine both the mechanical and magnetic material behavior. The correlation between features of magnetic and mechanical material behavior enables the micromagnetic prediction of mechanical properties and stress, both of which can decisively influence the service life. The Federal Ministry for Economic Affairs and Energy (BMWi) funded this research, handling the mutually superimposed microstructural and stress-dependent influences, a substantial challenge, especially under practical conditions. This superposition leads to ambiguities in the micromagnetic features. The 3MA testing system has been extended by more sophisticated evaluation methods being able to cope with more complex datasets. Investigations dealing with the expansion of the feature extraction and machine learning methods have led to a more precise distinction between microstructural and stress-dependent influences. This approach provides the basis for future applications in reactor safety.


Author(s):  
Abhinav Gupta ◽  
Ankit Dubey ◽  
Sunggook Cho

Abstract Nuclear industry spends enormous time and resources on designing and managing piping nozzles in a plant. Nozzle locations are considered as a potential location for possible failure that can lead to loss of coolant accident. Industry spends enormous time in condition monitoring and margin management at nozzle locations. Margins against seismic loads play a significant role in the overall margin management. Available margins against thermal loads are highly dependent upon seismic margins. In recent years, significant international collaboration has been undertaken to study the seismic margin in piping systems and nozzles through experimental and analytical studies. It has been observed that piping nozzles are highly overdesigned and the margins against seismic loads are quite high. While this brings a perspective of sufficient safety, such excessively high margins compete with available margins against thermal loads particularly during the life extension and subsequent license renewal studies being conducted by many plants around the world. This paper focuses on identifying and illustrating two key reasons that lead to excessively conservative estimates of nozzle fragilities. First, it compares fragilities based on conventional seismic analysis that ignores piping-equipment-structure interaction on nozzle fragility with the corresponding assessment by considering such interactions. Then, it presents a case that the uncertainties considered in various parameters for calculating nozzle fragility are excessively high. The paper identifies a need to study the various uncertainties in order to achieve a more realistic quantification based on recent developments in our understanding of the seismic behavior of piping systems.


2021 ◽  
Vol 313 ◽  
pp. 94-105
Author(s):  
A. Bernatskyi ◽  
V. Sydorets ◽  
O.M. Berdnikova ◽  
I. Krivtsun ◽  
O. Kushnarova

Extending the lifetime of energy facilities is extremely important today. This is especially true of nuclear power plants, the closure (or modernization) of which poses enormous financial and environmental problems. High-quality repair of reactors can significantly extend their service life. One of the critical parts is heat exchangers, the tubes of which quite often fail. Sealing, as a type of repair of heat exchanger tubes by the plugs, is promising provided that the joint quality is high. Practical experience in the use of welding to solve this problem has shown the need to search technological solutions associated with increasing the depth of penetration and reducing the area of thermal effect. The aim of the work was to develop a highly efficient technology for repair and extension of service life of heat exchangers of nuclear power plants based on the results of studying the technological features of laser welding of joints of dissimilar austenitic steels AISI 321 and AISI 316Ti in the vertical spatial position. Based on the results of the analysis of mechanical test data, visual and radiographic control, impermeability tests and metallographic studies of welded joints, the appropriate modes of laser welding of plugs have been determined. The principal causes of defects during laser welding of annular welded joints of dissimilar stainless steels are determined and techniques for their elimination and prevention of their formation are proposed. Based on the results of the research, technological recommendations for laser welding of plugs in the heat exchange tube of the collector are formulated, which significantly improves the technology of repair of steam generators of nuclear power plants and extends the service life of reactors.


Author(s):  
Simon Kuhn ◽  
Bojan Nicˇeno ◽  
Horst-Michael Prasser

Thermal fatigue is a relevant problem in the context of life-time extension of nuclear power plants (NPP). In many piping systems in NPPs hot and cold water is mixed, which leads to high temperature fluctuations in the region close to the solid wall and resulting thermal loads on the pipe walls that can cause fatigue. One of the relevant geometric test cases for thermal fatigue is the mixing in T-junctions. In this study we apply large–eddy simulations (LES) to the mixing of hot and cold water in a T-junction. We perform a set of simulations by using different formulations of the LES subgrid scale model, i.e. standard Smagorinsky and dynamic procedure, to identify the influence of the modelled subgrid scales on the simulation results. The results exhibit a large difference between the models, which is caused by the use of turbulent viscosity wall–damping functions when applying the standard model.


Sign in / Sign up

Export Citation Format

Share Document