Computational Study of Conjugate Heat Transfer in T-Junctions

Author(s):  
Simon Kuhn ◽  
Bojan Nicˇeno ◽  
Horst-Michael Prasser

Thermal fatigue is a relevant problem in the context of life-time extension of nuclear power plants (NPP). In many piping systems in NPPs hot and cold water is mixed, which leads to high temperature fluctuations in the region close to the solid wall and resulting thermal loads on the pipe walls that can cause fatigue. One of the relevant geometric test cases for thermal fatigue is the mixing in T-junctions. In this study we apply large–eddy simulations (LES) to the mixing of hot and cold water in a T-junction. We perform a set of simulations by using different formulations of the LES subgrid scale model, i.e. standard Smagorinsky and dynamic procedure, to identify the influence of the modelled subgrid scales on the simulation results. The results exhibit a large difference between the models, which is caused by the use of turbulent viscosity wall–damping functions when applying the standard model.

2007 ◽  
Vol 104 (3) ◽  
pp. 156-162 ◽  
Author(s):  
J. -A. Le Duff ◽  
A. Lefrançois ◽  
Y. Meyzaud ◽  
J.-Ph. Vernot ◽  
D. Martin ◽  
...  

Author(s):  
Pauline Bouin ◽  
Antoine Fissolo ◽  
Ce´dric Gourdin

Thermal fatigue phenomena are long term deterioration mechanisms which become more and more important as the life-time of nuclear power plant increases. Some incidents as the incident of Civaux I and some works in thermal fatigue have disproved current methodologies and usual criteria to predict propagation of thermal fatigue cracks in nuclear power plants. This paper presents the results of the thermal fatigue tests, Fat3D, which are conducted on 304L austenitic stainless steel pipes. This experiment has been designed to study the problem of closure effect and fatigue crack growth under thermal fatigue conditions on quasi-structure specimens. The importance of the initiation and the propagation phases on a notched specimen and the evolution of the stress intensity factor according to the propagation are investigated as well. The use of different non destructive techniques to detect and follow crack propagation is also assessed. In parallel, a numerical interpretation is developed based on a material characterisation and using finite element analyses with the French Cast3M code. This combined experimental and numerical study enables to assess improvements of classical methods to accurately predict the crack growth propagation under thermal loads and to understand the influence of the main parameters concerning crack propagation in such components.


Author(s):  
Robert A. Leishear

Water hammers, or fluid transients, compress flammable gasses to their autognition temperatures in piping systems to cause fires or explosions. While this statement may be true for many industrial systems, the focus of this research are reactor coolant water systems (RCW) in nuclear power plants, which generate flammable gasses during normal operations and during accident conditions, such as loss of coolant accidents (LOCA’s) or reactor meltdowns. When combustion occurs, the gas will either burn (deflagrate) or explode, depending on the system geometry and the quantity of the flammable gas and oxygen. If there is sufficient oxygen inside the pipe during the compression process, an explosion can ignite immediately. If there is insufficient oxygen to initiate combustion inside the pipe, the flammable gas can only ignite if released to air, an oxygen rich environment. This presentation considers the fundamentals of gas compression and causes of ignition in nuclear reactor systems. In addition to these ignition mechanisms, specific applications are briefly considered. Those applications include a hydrogen fire following the Three Mile Island meltdown, hydrogen explosions following Fukushima Daiichi explosions, and on-going fires and explosions in U.S nuclear power plants. Novel conclusions are presented here as follows. 1. A hydrogen fire was ignited by water hammer at Three Mile Island. 2. Hydrogen explosions were ignited by water hammer at Fukushima Daiichi. 3. Piping damages in U.S. commercial nuclear reactor systems have occurred since reactors were first built. These damages were not caused by water hammer alone, but were caused by water hammer compression of flammable hydrogen and resultant deflagration or detonation inside of the piping.


Author(s):  
Bruce A. Young ◽  
Sang-Min Lee ◽  
Paul M. Scott

As a means of demonstrating compliance with the United States Code of Federal Regulations 10CFR50 Appendix A, General Design Criterion 4 (GDC-4) requirement that primary piping systems for nuclear power plants exhibit an extremely low probability of rupture, probabilistic fracture mechanics (PFM) software has become increasingly popular. One of these PFM codes for nuclear piping is Pro-LOCA which has been under development over the last decade. Currently, Pro-LOCA is being enhanced under an international cooperative program entitled PARTRIDGE-II (Probabilistic Analysis as a Regulatory Tool for Risk-Informed Decision GuidancE - Phase II). This paper focuses on the use of a pre-defined set of base-case inputs along with prescribed variation in some of those inputs to determine a comparative set of sensitivity analyses results. The benchmarking case was a circumferential Primary Water Stress Corrosion Crack (PWSCC) in a typical PWR primary piping system. The effects of normal operating loads, temperature, leak detection, inspection frequency and quality, and mitigation strategies on the rupture probability were studied. The results of this study will be compared to the results of other PFM codes using the same base-case and variations in inputs. This study was conducted using Pro-LOCA version 4.1.9.


Author(s):  
Se´bastien Caillaud ◽  
Rene´-Jean Gibert ◽  
Pierre Moussou ◽  
Joe¨l Cohen ◽  
Fabien Millet

A piping system of French nuclear power plants displays large amplitude vibrations in particular flow regimes. These troubles are attributed to cavitation generated by single-hole orifices in depressurized flow regimes. Real scale experiments on high pressure test rigs and on-site tests are then conducted to explain the observed phenomenon and to find a solution to reduce pipe vibrations. The first objective of the present paper is to analyze cavitation-induced vibrations in the single-hole orifice. It is then shown that the orifice operates in choked flow with supercavitation, which is characterized by a large unstable vapor pocket. One way to reduce pipe vibrations consists in suppressing the orifices and in modifying the control valves. Three technologies involving a standard trim and anti-cavitation trims are tested. The second objective of the paper is to analyze cavitation-induced vibrations in globe-style valves. Cavitating valves operate in choked flow as the orifice. Nevertheless, no vapor pocket appears inside the pipe and no unstable phenomenon is observed. The comparison with an anti-cavitation solution shows that cavitation reduction has no impact on low frequency excitation. The effect of cavitation reduction on pipe vibrations, which involve essentially low frequencies, is then limited and the first solution, which is the standard globe-style valve installed on-site, leads to acceptable pipe vibrations. Finally, this case study may have consequences on the design of piping systems. First, cavitation in orifices must be limited. Choked flow in orifices may lead to supercavitation, which is here a damaging and unstable phenomenon. The second conclusion is that the reduction of cavitation in globe-style valve in choked flow does not reduce pipe vibrations. The issue is then to limit cavitation erosion of valve trims.


Author(s):  
Abhinav Gupta ◽  
Ankit Dubey ◽  
Sunggook Cho

Abstract Nuclear industry spends enormous time and resources on designing and managing piping nozzles in a plant. Nozzle locations are considered as a potential location for possible failure that can lead to loss of coolant accident. Industry spends enormous time in condition monitoring and margin management at nozzle locations. Margins against seismic loads play a significant role in the overall margin management. Available margins against thermal loads are highly dependent upon seismic margins. In recent years, significant international collaboration has been undertaken to study the seismic margin in piping systems and nozzles through experimental and analytical studies. It has been observed that piping nozzles are highly overdesigned and the margins against seismic loads are quite high. While this brings a perspective of sufficient safety, such excessively high margins compete with available margins against thermal loads particularly during the life extension and subsequent license renewal studies being conducted by many plants around the world. This paper focuses on identifying and illustrating two key reasons that lead to excessively conservative estimates of nozzle fragilities. First, it compares fragilities based on conventional seismic analysis that ignores piping-equipment-structure interaction on nozzle fragility with the corresponding assessment by considering such interactions. Then, it presents a case that the uncertainties considered in various parameters for calculating nozzle fragility are excessively high. The paper identifies a need to study the various uncertainties in order to achieve a more realistic quantification based on recent developments in our understanding of the seismic behavior of piping systems.


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Benan Cai ◽  
Qi Zhang ◽  
Yu Weng ◽  
Hongfang Gu ◽  
Haijun Wang

Abstract Pipelines such as the surge line and main pipe are easily subjected to thermal stratification and thermal fatigue as a result of the nonuniform temperature distribution in the nuclear power plants. When the surge line or main pipe subjected to thermal stratification and thermal fatigue keeps operating for long time, the pipe leakage may happen due to the existence of pipeline crack. When the fluids with high temperature and pressure leak in the crack, the water will evaporate quickly, which means this process belongs to spray flash evaporation process. The flash evaporation related to pipe leak was experimentally studied in the paper. The experiment was carried out under high temperature and high pressure with low spray rate. The temperature and relative humidity (T&H) variations over time were monitored in the experiment with installing T&H detectors. The T&H variations at different measurement positions and with different spray rates were analyzed, respectively. In addition, the effect of the dimensionless parameters including the Weber number and Jakob number was also investigated. Results indicated that the response speed increased with the increase of the spray flow rate. Higher Weber number and higher Jakob number led to higher evaporation rate. The slight pipe leakage can be predicted by using the (T&H) in the hazardous areas.


Author(s):  
Akemi Nishida

It is becoming important to carry out detailed modeling procedures and analyses to better understand the actual phenomena. Because some accidents caused by high-frequency vibrations of piping have been recently reported, the clarification of the dynamic behavior of the piping structure during operation is imperative in order to avoid such accidents. The aim of our research is to develop detailed analysis tools and to determine the dynamic behavior of piping systems in nuclear power plants, which are complicated assemblages of different parts. In this study, a three-dimensional dynamic frame analysis tool for wave propagation analysis is developed by using the spectral element method (SEM) based on the Timoshenko beam theory. Further, a multi-connected structure is analyzed and compared with the experimental results. Consequently, the applicability of the SEM is shown.


Author(s):  
Hiromasa Chitose ◽  
Hideo Machida ◽  
Itaru Saito

This paper provides failure probability assessment results for piping systems affected by stress corrosion cracking (SCC) and pipe wall thinning in nuclear power plants. On the basis of the results, considerations for applying the leak-before-break (LBB) concept in actual plants are presented. The failure probability for SCC satisfies the target failure probability even if conservative conditions are assumed. Moreover, for pipe wall thinning analysis, pre-service inspection is important for satisfying the target failure probability because the initial wall thickness affects the accuracy of the wall thinning rate. The pipe wall thinning analysis revealed that the failure probability is higher than the target probability if the bending stress in the pipe is large.


Sign in / Sign up

Export Citation Format

Share Document