scholarly journals Pharmacokinetic Interaction Between Oltipraz and Silymarin in Rats

2009 ◽  
Vol 12 (1) ◽  
pp. 1 ◽  
Author(s):  
Min Kyung Kang ◽  
Soo Kyung Bae ◽  
Jin Wan Kim ◽  
Myung Gull Lee

ABSTRACT. Purpose: To evaluate the pharmacokinetic interaction between oltipraz and silymarin after intravenous and oral administration of both drugs to male Sprague–Dawley rats. Methods: Oltipraz (single doses of 10 and 30 mg/kg for intravenous and oral administration, respectively), silymarin (single doses of 50 and 100 mg/kg for intravenous and oral administration, respectively, and 14 days oral administration of 100 mg/kg), alone and together were administered to control rats. Results: The pharmacokinetic parameters of oltipraz did not significantly altered by silymarin. However, after intravenous administration of the drugs together, the AUCs of unconjugated, conjugated, and total (unconjugated plus conjugated) silibinin were significantly different (32.7% decrease, and 32.1% and 27.2% increase, respectively), and total and (CL) and non-renal (CLNR ) clearance of unconjugated silibinin were significantly faster (49.4% and 61.1% increase, respectively) than those of silymarin alone (without oltipraz). After oral administration of silymarin with or without oltipraz, however, the pharmacokinetic parameters of unconjugated, conjugated, and total silibinin were comparable. Conclusions: After single intravenous administration of the drugs together, the AUC of unconjugated silibinin was significantly smaller, but that of both conjugated and total silibinin was significantly greater. This could have been due to an increase in the formation of conjugates (glucuronidation and sulfation) of silibinin as induced by oltipraz. After simultaneous oral administration of the drugs, however, the AUCs (or AUC0−12 h) of unconjugated, conjugated, and total silibinin were comparable.

2008 ◽  
Vol 11 (1) ◽  
pp. 88 ◽  
Author(s):  
Myung G. Lee ◽  
Young H Choi ◽  
Inchul Lee

To test the effect of insulin treatment on the pharmacokinetics of metformin in rats with diabetes mellitus induced by alloxan (DMIA rats). The following results were reported from other studies. Metformin was metabolized via hepatic CYP2C11, 2D1, and 3A1/2 in rats. In DMIA rats, the protein expression and mRNA levels of hepatic CYP2C11 and 3A1/2 decreased and increased, respectively. In rat model of diabetes mellitus induced by streptozotocin, the protein expression of hepatic CYP2D1 was not changed. The increase in hepatic CYP1A2, 2B1, and 2E1, and decrease in hepatic CYP2C11 in DMIA rats was returned to the controls by insulin treatment. METHODS. Metformin (100 mg/kg) was administered intravenously and orally to the control rats, DMIA rats, and DMIA rats with insulin treatment for 3 weeks (DMIA rats with insulin). RESULTS. After intravenous administration of metformin to the DMIA rats, the CLR and CLNR of the drug were significantly slower than the controls. After oral administration of metformin to the DMIA rats, the AUC of the drug was also significantly greater than the controls. After intravenous administration of metformin to the DMIA rats with insulin, the significantly slower CLNR of the drug in the DMIA rats was returned to the controls. The altered pharmacokinetic indices observed following intravenous and oral administration of metformin to DMIA rats returned to the control values in the DMIA rats with insulin. CONCLUSIONS. The significantly slower CLNR of metformin in the DMIA rats could be due to the decrease in hepatic CYP2C11 than the controls. The comparable CLNR of metformin between the DMIA rats with insulin and the control rats could be due to restoration of hepatic CYP enzyme changes in DMIA rats to the controls.


2021 ◽  
Vol 17 ◽  
Author(s):  
Xingxing Zhuang ◽  
Li Zhou ◽  
Renhua Miao ◽  
Shoudong Ni ◽  
Meng Li

Introduction:: Asari Radix et Rhizoma (ARR) and dried ginger (Zingiber officinalis) (DG) are often used together in drug preparations in traditional Chinese medicine (TCM) to treat respiratory diseases including cold, bronchitis and pneumonia. Previous studies suggested that ARR and/or DG may influence the pharmacokinetics of other herbal components. In the current study, we examined pharmacokinetic interactions between ARR and DG in rats after oral administration. Methods:: We developed a method based on ultra-high-performance liquid chromatography-tandem mass spectrometry to simultaneously measure serum concentrations of two active components each in ARR (L-asarinin and sesamin) and DG (6-gingerol and 6-shogaol). Adult Sprague-Dawley rats were starved overnight, then given ARR extract, DO extract, or a co-decoction of ARR and DG by gastric gavage (6 g raw material per kg body weight; n = 6 per group). Blood samples were collected prior to drug administration and at the following times (h) afterward: 0.5, 1.0, 1.5, 2.0, 3.0, 4.0, 6.0, 8.0, 12.0 and 24.0. Pharmacokinetic parameters were compared using Student’s t test for independent samples. Results:: A simple, rapid, sensitive analytical method has been developed to detect four bioactive components simultaneously in the ARR-DG herbal pair. Pharmacokinetic parameters including Cmax, Tmax, T1/2 and AUC(0~t) were calculated using the non-compartmental model with the DAS 2.0 pharmacokinetic software. For L-asarinin, Tmax was 2.00 ± 0.00 h in ARR animals and 1.67±0.26 h in ARR-DG animals (P<0.05), T1/2 was 8.58 ± 1.75 h in ARR and 11.93 ± 2.13 h in ARR-DG (P<0.05). For 6-gingerol, Cmax was 350.48 ± 23.85 ng/mL in DG animals and 300.21 ± 20.02 ng/mL in ARR-DG (P<0.01), Tmax was 2.83 ± 0.41 h in DG and 2.17 ± 0.41 h in ARR-DG (P<0.05) and AUC(0~t) was 1.93 ± 0.15 mg/mL•h in ARR and 1.70 ± 0.15 mg/mL•h in ARR-DG (P<0.05). For 6-shogaol, Cmax was 390.28 ± 26.02 ng/mL in DG animals and 455.63 ± 31.01 ng/mL in ARR-DG (P<0.01), Tmax was 2.93 ± 0.10 h in DG and 1.92 ± 0.10 h in ARR-DG (P<0.01), T1/2 was 3.74 ± 0.29 h in DG and 3.28 ± 0.22 h in ARR-DG (P<0.01), and AUC(0~t) was 2.15 ± 0.18 mg/mL•h in DG and 2.73 ± 0.15 mg/mL•h in ARR-DG (P<0.01). Conclusions:: Pharmacokinetic interations between ARR and DG decrease Tmax, increase T1/2 but do not affect overall bioavailability of L-asarinin in ARR. The interactions in ARR-DG decrease Cmax and Tmax but increase T1/2 and AUC(0~t) of 6-gingerol in DG. The interactions increase Cmax and AUC(0~t) but decrease Tmax and T1/2 of 6- shogaol in DG. Interactions in ARR-DG do not affect the pharmacokinetics of sesamin.


2007 ◽  
Vol 52 (3) ◽  
pp. 1046-1051 ◽  
Author(s):  
Joo H. Lee ◽  
Yu K. Cho ◽  
Young S. Jung ◽  
Young C. Kim ◽  
Myung G. Lee

ABSTRACT It has been reported that telithromycin is metabolized primarily via hepatic microsomal cytochrome P450 (CYP) 3A1/2 in rats and that the expression of hepatic and intestinal CYP3A decreases in rats pretreated with Escherichia coli lipopolysaccharide (ECLPS rats; an animal model of inflammation). Thus, it is possible that the area under the plasma concentration-time curve from 0 h to infinity (AUC0-∞) of intravenous and oral telithromycin is greater for ECLPS rats than for the controls. To assess this, the pharmacokinetic parameters of telithromycin were compared after intravenous and oral administration (50 mg/kg). After intravenous administration of telithromycin, the AUC0-∞ was significantly greater (by 83.4%) in ECLPS rats due to a significantly lower nonrenal clearance (by 44.5%) than in the controls. This may have been due to a significantly decreased hepatic metabolism of telithromycin in ECLPS rats. After oral administration of telithromycin, the AUC0-∞ in ECLPS rats was also significantly greater (by 140%) than in the controls and the increase was considerably greater than the 83.4% increase after intravenous administration. This could have been due to a decrease in intestinal metabolism in addition to a decreased hepatic metabolism of telithromycin in ECLPS rats.


2003 ◽  
Vol 14 (5) ◽  
pp. 263-270
Author(s):  
Linghui Kong ◽  
John S Cooperwood ◽  
Shu-Hui Christine Huang ◽  
Chung K Chu ◽  
F Douglas Boudinot

3′-Azido-2′, 3′-dideoxyuridine (AZDU, AzddU, CS-87) has been shown to have potent anti-HIV activity in vitro. However, the compound exhibits a relatively short half-life and incomplete oral bioavailability in humans. In an effort to improve the pharmacokinetic properties of AZDU, prodrug 3′-azido-2′,3′-dideoxyuridine-5′- O-valinate hydrochloride (AZDU-VAL) was synthesized by the esterification of 5′-OH function in AZDU. The objective of this study was to investigate the biotransformation and pharmacokinetics of AZDU-VAL along with its antiviral parent compound AZDU following intravenous and oral administration to rats. Adult male Sprague-Dawley rats were administered AZDU or AZDU-VAL by intravenous injection or oral gavage. Concentrations of AZDU-VAL and AZDU were determined by HPLC. Pharmacokinetic parameters were generated by area-moment analysis. The bioavailability of AZDU after oral administration was approximately 53%. The terminal phase half-life of the nucleoside analogue ranged between 0.6 h after intravenous administration and 1 h following oral administration. In vivo the prodrug was rapidly and efficiently biotransformed to yield AZDU following intravenous and oral administration. The apparent availability of AZDU was virtually complete following oral administration of prodrug AZDU-VAL averaging 101%. The bioavailability of AZDU following intravenous administration of AZDU-VAL averaged 106%. In summary, the disposition of AZDU was dose dependent over the dose range of 25–100 mg/kg. Renal clearance and steady state volume of distribution were lower at the higher dose level. Prodrug AZDU-VAL demonstrated improved oral bioavailability as evidenced by complete absorption and efficient bioconversion to AZDU. The results suggest that AZDU-VAL may be a promising prodrug for the delivery of AZDU.


2008 ◽  
Vol 3 (12) ◽  
pp. 1934578X0800301 ◽  
Author(s):  
Sasiporn Sarawek ◽  
Hartmut Derendorf ◽  
Veronika Butterweck

The pharmacokinetic parameters of luteolin and its glucuronide/sulfate conjugates were studied in rats after a single 50 mg/kg dose of luteolin administered as intravenous bolus or oral solution. Plasma and urine samples were enzymatically hydrolyzed to determine conjugate concentrations of luteolin. Noncompartmental analysis revealed a half-life of 8.94 h for free (unconjugated) and 4.98 h for conjugated luteolin following intravenous administration. Following oral administration, plasma concentrations of luteolin attained a maximum level of 5.5 μg/mL at 5 min and decreased to below LOQ (100 ng/mL) after 1 h. Ke could not be calculated because the elimination phase was below LOQ. The low bioavailability (F) of luteolin, 4.10% at a dose of 50 mg/kg, is presumably due to the significant first pass effect. For i.v. administration, the maximum concentration of luteolin was 23.4 μg/mL at 0 h. The plasma concentration versus time profile of luteolin was biphasic, subdivided into a distribution phase and a slow elimination phase for oral and intravenous administration. Luteolin was found to have a large volume of distribution and a high clearance. Double peaks were found after intravenous and oral administration, suggesting enterohepatic recirculation.


1969 ◽  
Vol 62 (1) ◽  
pp. 11-20 ◽  
Author(s):  
Colum A. Gorman ◽  
James W. Anderson ◽  
Eunice V. Flock ◽  
Charles A. Owen ◽  
Khalil G. Wakim

ABSTRACT Thyroiditis was induced in Sprague-Dawley rats by repeated immunization with thyroid extract and Freund's adjuvant. Immunized and control animals were killed at intervals up to 6 hours after intravenous administration of 131I as iodide at 5, 8 and 10 weeks after the first injection. Radioiodinated compounds in the thyroid glands were identified chromatographically. Evidence of moderate thyroiditis was present (histologic appearance, gland weight, and protein-bound iodine-butanol-extractable iodine difference) but the rate of incorporation of radioiodide into thyroxine, the percentage of radioactivity in the gland as iodide, and the MIT/DIT ratio were not significantly different in immunized and control animals. The MIT/DIT ratio was found to vary with time after 131I administration in both immunized and control animals. These studies did not uncover a defect in organification of iodide in experimental thyroiditis similar to that described by others in humans with Hashimoto's thyroiditis.


2015 ◽  
Vol 10 (9) ◽  
pp. 1934578X1501000 ◽  
Author(s):  
Rosario Russo ◽  
Angelo Mancinelli ◽  
Michele Ciccone ◽  
Fabio Terruzzi ◽  
Claudio Pisano ◽  
...  

Diosmin is a naturally occurring flavonoid present in citrus fruits and other plants belonging to the Rutaceae family. It is used for the treatment of chronic venous insufficiency (CVI) for its pheblotonic and vaso-active properties, safety and tolerability as well. The aim of the current in vivo study was to investigate the pharmacokinetic profile of a branded micronized diosmin (μSMIN Plus™) compared with plain micronized diosmin in male Sprague-Dawley rats. After oral administration by gastric gavage, blood samples were collected via jugular vein catheters at regular time intervals from baseline up to 24 hours. Plasma concentrations were assessed by LC/MS. For each animal, the following pharmacokinetic parameters were calculated using a non-compartmental analysis: maximum plasma drug concentration (Cmax), time to reach Cmax (Tmax), area under the plasma concentration-time curve (AUC0-last), elimination half-life (t1/2), and relative oral bioavailability (%F). The results of the current study clearly showed an improvement in the pharmacokinetic parameters in animals treated with μSMIN Plus™ compared with animals treated with micronized diosmin. In particular, μSMIN Plus™ showed a 4-fold increased bioavailability compared with micronized diosmin. In conclusion, the results from the current study provided a preliminary pharmacokinetic profile for μSMIN Plus™, which may represent a new tool for CVI management.


2019 ◽  
Vol 33 (12) ◽  
Author(s):  
Priyanka Lohar ◽  
Manish Kumar Sharma ◽  
Amit Kumar Sahu ◽  
Rajeswari Rathod ◽  
Pinaki Sengupta

Sign in / Sign up

Export Citation Format

Share Document