LABORATORY OBSERVATIONS ON THE LIFE CYCLE OF HISTER NOMAS (COLEOPTERA: HISTERIDAE)

1988 ◽  
Vol 23 (2) ◽  
pp. 124-130 ◽  
Author(s):  
J. W. Summerlin ◽  
G. T. Fincher

The biology of Hister nomas Erichson was studied in the laboratory to define the developmental history of this bovine dung attracted predator. Female beetles deposited eggs singly 0.5–3.0 cm deep in the soil beneath dung. Embryogenesis was completed in 2.8 days after oviposition. There were two larval instars; each stage required ca. 6.1 and 6.2 days, respectively, for full development, and pupation to adult emergence averaged 17.5 days. Developmental time from oviposition to adult averaged 32.6 days.

Author(s):  
Alec R. Lackmann ◽  
Malcolm G. Butler

Except for one unconfirmed case, chironomid larvae have been reported to pass through four larval instars between egg and pupal stages. We have observed a fifth larval instar to be a standard life-cycle feature of the podonomine Trichotanypus alaskensis Brundin 1966 in tundra ponds on the Arctic Coastal Plain near Barrow, Alaska. T. alaskensis has a one-year life cycle in these arctic ponds. Adults emerge in June ~2-3 weeks after pond thaw, then mate and oviposit; most newly-hatched larvae reach instar IV by October when pond sediments freeze. Overwintering larvae complete instar IV within a few days of thaw, then molt again to a fifth larval instar. Imaginal discs, normally seen only during instar IV in Chironomidae, develop across both instars IV & V prior to pupation and adult emergence. While monitoring larval development post-thaw in 2014, we noticed freshly-molted T. alaskensis larval exuviae a week or more prior to any pupation by that species. In 2015-16 we reared overwintering instar IV larvae from single pond sources, individually with daily monitoring, through molts to instar V, pupa, and adult. Some overwintering instar II and III larvae were reared as well, but were few in number. During 2016 we also reared T. alaskensis progeny (from eggs) through instar II, thus documenting head capsule size ranges for all five instars in a single pond’s population. Without individual rearings, the fifth larval instar was not readily apparent for two reasons: 1) The molt itself occurs immediately after thaw and is so synchronous it is difficult to discern in daily field samples. 2) The head capsule size increment between instars IV-V is much lower than the ratio predicted by the Brooks-Dyar Rule. Up through instar IV, the Brooks-Dyar ratio for T. alaskensis ranged 1.30-1.61, but during the IV-V molt head capsule dimensions (sexes pooled) increased by a ratio of 1.09 – comparable to the magnitude of sexual dimorphism in head capsule size within each of the final two larval instars. Individual rearings coupled with 2014-2016 field surveys in nine other ponds suggest that five larval instars is an obligatory trait of this species at this location. As this is the first confirmed case of five larval instars in a chironomid, the phylogenetic uniqueness of this trait needs further investigation.


1982 ◽  
Vol 114 (6) ◽  
pp. 535-537 ◽  
Author(s):  
Michael T. Smith ◽  
Richard A. Goyer

AbstractThe life cycle of Corticeus glaber (LeConte) was investigated at 25 °C and 60% R.H. The developmental time from egg to adult for C. glaber ranged from 30 to 41 days and five larval instars were determined from head capsule measurements. The mature larva is described.


Holzforschung ◽  
2002 ◽  
Vol 56 (4) ◽  
pp. 335-359 ◽  
Author(s):  
P. Oevering ◽  
A.J. Pitman

Summary Pselactus spadix attack of marine timbers was characterised by circular emergence holes 1.48±0.05 mm in diameter and adult tunnels (1.49±0.34 mm) breaking through the wood surface. Larval tunnels measured 0.407–1.892 mm in diameter, initiated from adult tunnels and increased in diameter away from the adult tunnel terminating in frass free pupal chambers (1.6±0.3 mm × 3.5±0.7 mm). Observations of larval tunnel locations indicated oviposition occurred inside the adult tunnels. P. spadix life history was investigated in Scots pine (Pinus sylvestris) heartwood at 22±2 °C and 99±1% r.h. Mean adult longevity was 11.5±6.5 months, with mean post-mating longevity for males (11.7±2.9 months) significantly longer than for females (6.3±1.1 months). Adults of at least 2–3 months old were found mating in galleries, which, with observations of the larval tunnel pattern, indicated P. spadix can complete its life cycle without emerging from wood. Five larval instars were identified by measurement of 1722 head capsule widths and application of Dyar's law. Mean development time from 2nd instar to adult emergence was 70.5±6.9 weeks and pupation took 14.6±5.8 days. Development from 2nd instar to reproductive adult took between 17–20 months, with life cycle approximating 24 months at 22±2 °C and 99±1%


1987 ◽  
Vol 65 (1) ◽  
pp. 156-163 ◽  
Author(s):  
Olga Kukal ◽  
Peter G. Kevan

The life history of Gynaephora groenlandica was studied in the high arctic at Alexandra Fiord, Ellesmere Island. Life history events (larval development, pupation, adult emergence, mating, oviposition, hatching, and moulting to the second larval instar) occurred only in the 3–4 weeks before mid-July. Larvae fed mainly on Salix arctica. They stopped feeding by the end of June, hid, and spun hibernacula. Nineteen percent of third- and fourth-instar larvae were parasitized by the wasp Hyposoter pectinatus (Ichenumonidae); 52% of fifth- and sixth-instar larvae and pupae were parasitized by the fly Exorista sp. (Tachinidae). We estimated that G. groenlandica has a life cycle lasting 14 years. Parasitism caused 56% of overall mortality, whereas cumulative winter mortality was calculated as 13% of a cohort passing through a 14-year life cycle. Peak of activity of adult parasitoids coincided with inactivity of Gynaephora larvae during July. Selective pressure of parasitism may restrict development of G. groenlandica to a short period before adult parasitoids are most active. The importance of parasitoids in the life history of G. groenlandica suggests that parasitism is as significant as climate in population regulation of insects living in the high arctic.


2009 ◽  
Vol 15 (5) ◽  
pp. 422-434 ◽  
Author(s):  
José Tormos ◽  
Francisco Beitia ◽  
Elias A. Böckmann ◽  
Josep D. Asís ◽  
Severiano Fernández

AbstractThe development and morphology of the immature phases of Pachycrepoideus vindemmiae (Rondani, 1875) (Hymenoptera, Pteromalidae) are described from a laboratory rearing culture maintained on Ceratitis capitata (Wiedemann, 1824) (Diptera, Tephritidae) using microscopic techniques, including light and scanning electron microscopy. The surface of the chorion of the egg is granulated, and the micropyle occurs at the anterior end. The labrum of the first instar larva does not have sensilla, and the second to fourth instar larvae have setae on the head. The mature larva is characterized by the position and number of the integumental differentations (sensilla and setae). On completion of larval development, an adecticous and exarate pupa is produced. As for the adult, the mandibles of the pupae are toothed. Five larval instars are recorded, based on statistical analyses of the sizes of the larval mandibles in combination with characters such as the number of exuviae and excretion of the meconium. Developmental time from egg to adult emergence was ∼18–20 days for males and ∼21–23 days for females at 21–26°C, 55–85 relative humidity, and a 16L:8D photoperiod. The results show that the eggs and different larval instars of this parasitoid can be unambiguously identified only by scanning electron microscope.


1996 ◽  
Vol 128 (2) ◽  
pp. 177-186 ◽  
Author(s):  
Cameron R. Currie ◽  
John R. Spence ◽  
W. Jan A. Volney

AbstractThe life cycle, phenology, and abundance of Epuraea obliquus Hatch was studied near Hinton, Alberta. Most of the life cycle occurs on galls of Endocronartium harknessii (J.P. Moore) Y. Hiratsuka (western gall rust) infecting lodgepole pine (Pinus contorta Dougl. var latifolia Engelm.). Both adults and larvae feed on the spores of the fungus. Individuals of this beetle were found on most galls sampled. Adults overwinter in the soil. They emerge in the spring to seek out and colonize galls. Eggs are laid on the surface of galls, mainly under the periderm, and larvae feed on the fungus, developing through three larval instars. Larvae in the last instar drop from galls to pupate in the soil. Adults leave the soil in late summer and return to feed on inactive galls before overwintering in the soil. The phenology of E. obliquus is closely synchronized with the timing of rust sporulation and the impact of beetle feeding may be an important natural control of western gall rust.


1965 ◽  
Vol 97 (9) ◽  
pp. 962-969
Author(s):  
Louis F. Wilson

AbstractThe pine gall weevil has a 3-year life cycle on red pine (Pinus resinosa Ait.) in Michigan. Adults oviposit from June to August, depositing 1 to 10 eggs in a niche chewed in the bark of a branch internode. Larvae first emerge in August, feed as a group toward the cambium, and then radiate out along the xylem. Head capsule measurements from 1585 larvae indicate that there are three larval instars. Gall development begins in June of the second year, shortly after the larvae begin the second instar. The third instar commences in June of the third year. Pupation occurs in May of the fourth season; adult emergence follows in June. Overwintering occurs in the egg stage or in the three larval instars. Adults do not overwinter, and apparently three distinct broods occur in Michigan.


1965 ◽  
Vol 97 (7) ◽  
pp. 684-690 ◽  
Author(s):  
R. W. Stark ◽  
J. H. Borden

AbstractThe life history of a tortricid cone moth Choristoneura lambertiana subretiniana Obraztsov in California is described. The larvae feed primarily on staminatc flowers and cones of lodgepole pine although some needle- and tip-mining occurs. The only other recorded host is ponderosa pine.Eggs are deposited in late July to early August; first-instar larvae migrate from the needles to protected locations on the branches and spin hibernacula. The larvae overwinter predominantly as second-instar larvae in the hibernaculum. They emerge from the hibernacula in April, and mature in four to six weeks. There are six larval instars. The pupal period lasts approximately two weeks; adult emergence begins in mid-July and extends through the end of August.


Sign in / Sign up

Export Citation Format

Share Document