scholarly journals nf-rnaSeqCount: A Nextflow pipeline for obtaining raw read counts from RNA-seq data

2021 ◽  
Vol 33 (2) ◽  
Author(s):  
Phelelani Mpangase ◽  
Jacqueline Frost ◽  
Mohammed Tikly ◽  
Michèle Ramsay ◽  
Scott Hazelhurst

The rate of raw sequence production through Next-Generation Sequencing (NGS) has been growing exponentially due to improved technology and reduced costs. This has enabled researchers to answer many biological questions through ``multi-omics'' data analyses. Even though such data promises new insights into how biological systems function and understanding disease mechanisms, computational analyses performed on such large datasets comes with its challenges and potential pitfalls. The aim of this study was to develop a robust portable and reproducible bioinformatic pipeline for the automation of RNA sequencing (RNA-seq) data analyses. Using Nextflow as a workflow management system and Singularity for application containerisation, the nf-rnaSeqCount pipeline was developed for mapping raw RNA-seq reads to a reference genome and quantifying abundance of identified genomic features for differential gene expression analyses. The pipeline provides a quick and efficient way to obtain a matrix of read counts that can be used black with tools such as DESeq2 and edgeR for differential expression analysis. Robust and flexible bioinformatic and computational pipelines for RNA-seq data analysis, from QC to sequence alignment and comparative analyses, will reduce analysis time, and increase accuracy and reproducibility of findings to promote transcriptome research.

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Matthew Chung ◽  
Vincent M. Bruno ◽  
David A. Rasko ◽  
Christina A. Cuomo ◽  
José F. Muñoz ◽  
...  

AbstractAdvances in transcriptome sequencing allow for simultaneous interrogation of differentially expressed genes from multiple species originating from a single RNA sample, termed dual or multi-species transcriptomics. Compared to single-species differential expression analysis, the design of multi-species differential expression experiments must account for the relative abundances of each organism of interest within the sample, often requiring enrichment methods and yielding differences in total read counts across samples. The analysis of multi-species transcriptomics datasets requires modifications to the alignment, quantification, and downstream analysis steps compared to the single-species analysis pipelines. We describe best practices for multi-species transcriptomics and differential gene expression.


2015 ◽  
Vol 9s1 ◽  
pp. BBI.S28991 ◽  
Author(s):  
Yixing Han ◽  
Shouguo Gao ◽  
Kathrin Muegge ◽  
Wei Zhang ◽  
Bing Zhou

Next-generation sequencing technologies have revolutionarily advanced sequence-based research with the advantages of high-throughput, high-sensitivity, and high-speed. RNA-seq is now being used widely for uncovering multiple facets of transcriptome to facilitate the biological applications. However, the large-scale data analyses associated with RNA-seq harbors challenges. In this study, we present a detailed overview of the applications of this technology and the challenges that need to be addressed, including data preprocessing, differential gene expression analysis, alternative splicing analysis, variants detection and allele-specific expression, pathway analysis, co-expression network analysis, and applications combining various experimental procedures beyond the achievements that have been made. Specifically, we discuss essential principles of computational methods that are required to meet the key challenges of the RNA-seq data analyses, development of various bioinformatics tools, challenges associated with the RNA-seq applications, and examples that represent the advances made so far in the characterization of the transcriptome.


2016 ◽  
Author(s):  
Stefano Beretta ◽  
Yuri Pirola ◽  
Valeria Ranzani ◽  
Grazisa Rossetti ◽  
Raoul Bonnal ◽  
...  

MOTIVATION Long non-coding RNAs (lncRNAs) have recently gained interest, especially for their involvement in controlling several cell processes, but a full understanding of their role is lacking. Differential Expression (DE) analysis is one of the most important tasks in the analysis of RNA-seq data, since it potentially points out genes involved in the regulation of the condition under study. However, a classical analysis at gene level may disregard the role of Alternative Splicing (AS) in regulating cell conditions. This is the case, for example, when a given gene is expressed in all the different conditions, but the expressed isoform is significantly diverse in the different conditions (that is an isoform switch). A transcript level analysis may better shed light on this case, especially in studies having as goal, for example, a better understanding of the behavior of lncRNAs in lymphocytes T cells, which are fundamental in studies of specific diseases, such as cancer. After Cufflinks/Cuffdiff, several approaches for DE analysis at isoform/transcript level have been proposed. However, their results are often sensitive to the upstream analysis such as read mapping, transcript reconstruction and quantification, and it is often hard to choose "a priori" the most appropriate combination of tools. This work presents a tool for assisting the user in this choice, and poses the bases for a study devoted to the characterization of lncRNAs and the identification of of isoform switch events. Our tool includes a framework for the description and the execution of a set of DE pipelines over the same input dataset, as well a set of tools for reconciling and comparing the results. METHOD We designed an automated and easily customizable tool which is able to execute a set of existing pipelines for DE analysis at transcript level starting from RNA-seq data. Our method is built upon Snakemake, a workflow management system, with the specific goal of reducing the complexity of creating workflows. This approach guarantees that the experimentation is fully replicable and easy to customize. Each considered pipeline is structured in three steps: (i) transcript assembly, (ii) quantification, and (iii) DE analysis. By default, our tool builds and compares 9 different pipelines, each taking as input the same set of RNA-seq reads, obtained by combining different state-of-the-art methods to perform the transcript assembly (TA step) with different state-of-the-art methods to perform quantification and differential expression analysis (Q+DE step). More precisely, the 9 pipelines are obtained by combining two tools (Cufflinks and StringTie) and a Reference Annotation (Ensembl annotated transcripts) for the TA step, with three tools (Cuffquant+Cuffdiff, StringTie-B+Ballgown and Kallisto+Sleuth) for the Q+DE step. Abstract truncated at 3,000 characters - the full version is available in the pdf file


BMC Genomics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Alberto Luiz P. Reyes ◽  
Tiago C. Silva ◽  
Simon G. Coetzee ◽  
Jasmine T. Plummer ◽  
Brian D. Davis ◽  
...  

Abstract Background The development of next generation sequencing (NGS) methods led to a rapid rise in the generation of large genomic datasets, but the development of user-friendly tools to analyze and visualize these datasets has not developed at the same pace. This presents a two-fold challenge to biologists; the expertise to select an appropriate data analysis pipeline, and the need for bioinformatics or programming skills to apply this pipeline. The development of graphical user interface (GUI) applications hosted on web-based servers such as Shiny can make complex workflows accessible across operating systems and internet browsers to those without programming knowledge. Results We have developed GENAVi (Gene Expression Normalization Analysis and Visualization) to provide a user-friendly interface for normalization and differential expression analysis (DEA) of human or mouse feature count level RNA-Seq data. GENAVi is a GUI based tool that combines Bioconductor packages in a format for scientists without bioinformatics expertise. We provide a panel of 20 cell lines commonly used for the study of breast and ovarian cancer within GENAVi as a foundation for users to bring their own data to the application. Users can visualize expression across samples, cluster samples based on gene expression or correlation, calculate and plot the results of principal components analysis, perform DEA and gene set enrichment and produce plots for each of these analyses. To allow scalability for large datasets we have provided local install via three methods. We improve on available tools by offering a range of normalization methods and a simple to use interface that provides clear and complete session reporting and for reproducible analysis. Conclusion The development of tools using a GUI makes them practical and accessible to scientists without bioinformatics expertise, or access to a data analyst with relevant skills. While several GUI based tools are currently available for RNA-Seq analysis we improve on these existing tools. This user-friendly application provides a convenient platform for the normalization, analysis and visualization of gene expression data for scientists without bioinformatics expertise.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Rashi Gupta ◽  
Isha Dewan ◽  
Richa Bharti ◽  
Alok Bhattacharya

RNA-Seq is increasingly being used for gene expression profiling. In this approach, next-generation sequencing (NGS) platforms are used for sequencing. Due to highly parallel nature, millions of reads are generated in a short time and at low cost. Therefore analysis of the data is a major challenge and development of statistical and computational methods is essential for drawing meaningful conclusions from this huge data. In here, we assessed three different types of normalization (transcript parts per million, trimmed mean of M values, quantile normalization) and evaluated if normalized data reduces technical variability across replicates. In addition, we also proposed two novel methods for detecting differentially expressed genes between two biological conditions: (i) likelihood ratio method, and (ii) Bayesian method. Our proposed methods for finding differentially expressed genes were tested on three real datasets. Our methods performed at least as well as, and often better than, the existing methods for analysis of differential expression.


2016 ◽  
Author(s):  
Stefano Beretta ◽  
Yuri Pirola ◽  
Valeria Ranzani ◽  
Grazisa Rossetti ◽  
Raoul Bonnal ◽  
...  

MOTIVATION Long non-coding RNAs (lncRNAs) have recently gained interest, especially for their involvement in controlling several cell processes, but a full understanding of their role is lacking. Differential Expression (DE) analysis is one of the most important tasks in the analysis of RNA-seq data, since it potentially points out genes involved in the regulation of the condition under study. However, a classical analysis at gene level may disregard the role of Alternative Splicing (AS) in regulating cell conditions. This is the case, for example, when a given gene is expressed in all the different conditions, but the expressed isoform is significantly diverse in the different conditions (that is an isoform switch). A transcript level analysis may better shed light on this case, especially in studies having as goal, for example, a better understanding of the behavior of lncRNAs in lymphocytes T cells, which are fundamental in studies of specific diseases, such as cancer. After Cufflinks/Cuffdiff, several approaches for DE analysis at isoform/transcript level have been proposed. However, their results are often sensitive to the upstream analysis such as read mapping, transcript reconstruction and quantification, and it is often hard to choose "a priori" the most appropriate combination of tools. This work presents a tool for assisting the user in this choice, and poses the bases for a study devoted to the characterization of lncRNAs and the identification of of isoform switch events. Our tool includes a framework for the description and the execution of a set of DE pipelines over the same input dataset, as well a set of tools for reconciling and comparing the results. METHOD We designed an automated and easily customizable tool which is able to execute a set of existing pipelines for DE analysis at transcript level starting from RNA-seq data. Our method is built upon Snakemake, a workflow management system, with the specific goal of reducing the complexity of creating workflows. This approach guarantees that the experimentation is fully replicable and easy to customize. Each considered pipeline is structured in three steps: (i) transcript assembly, (ii) quantification, and (iii) DE analysis. By default, our tool builds and compares 9 different pipelines, each taking as input the same set of RNA-seq reads, obtained by combining different state-of-the-art methods to perform the transcript assembly (TA step) with different state-of-the-art methods to perform quantification and differential expression analysis (Q+DE step). More precisely, the 9 pipelines are obtained by combining two tools (Cufflinks and StringTie) and a Reference Annotation (Ensembl annotated transcripts) for the TA step, with three tools (Cuffquant+Cuffdiff, StringTie-B+Ballgown and Kallisto+Sleuth) for the Q+DE step. Abstract truncated at 3,000 characters - the full version is available in the pdf file


2021 ◽  
Author(s):  
Rashid Saif ◽  
Aniqa Ejaz ◽  
Tania Mahmood ◽  
Saeeda Zia

ABSTRACTAdvances in the next generation sequencing (NGS) technologies, their cost effectiveness and well-developed pipelines using computational tools/softwares has allowed researchers to reveal ground-breaking discoveries in multi-omics data analysis. However, there is still uncertainty due to massive upsurge in parallel tools and difficulty in choosing best practiced pipeline for expression profiling of RNA sequenced (RNA-seq) data. Here, we detail the optimized pipeline that works at a fast pace with enhanced accuracy on personal computer rather than using cloud or high-performance computing clusters (HPC). The steps include quality check, base filtration, quasi-mapping, quantification of samples, estimation and counting of transcript/gene expression abundances, identification and clustering of differentially expressed features and visualization of the data. The tools FastQC, Trimmomatic, Salmon and some other scripts in Trinity toolkit were applied on two paired-end datasets. An extension of this pipeline may also be formulated in future for the gene ontology enrichment analysis and functional annotation of the differential expression matrix to make this data biologically more significant.


2020 ◽  
Author(s):  
Diana Lobo ◽  
Raquel Godinho ◽  
John Archer

Abstract Background In the last decades, the evolution of RNA-Seq has yielded archived datasets that possess the potential for providing unprecedented inter-study insight into transcriptome evolution, once background noise has been reduced. Here we present a method to quantify intra-condition variation and to remove reference-based transcripts associated with highly variable read counts, prior to differential expression analysis. The method utilizes variation within pairwise distances between normalized read counts for each transcript across all included samples of a given condition. As a case study, we demonstrate our approach at an inter and intra-study level using RNA-seq data from brain samples of dogs, wolves, and two strains of fox (aggressive and tame) prior to performing differential expression analysis to identify common genes associated with tame behaviour. Results By applying our method, the distribution of the gene-wise dispersion estimates improved and the number of outliers detected in differential expression analysis decreased. Several genes that initially were differentially expressed in the non-filtered datasets were removed due to high intra-condition variation. Additionally, by optimizing the detection of differentially expressed transcripts, the overall number increased between dogs vs wolves and tame vs aggressive foxes when compared to the non-filtered datasets. Using these filtered sets, we found common over expressed genes in dogs and tame foxes, including those involved in brain development, neurotransmission and immunity, factors known to be involved in domestication. Conclusions We presented a method to quantify and remove intra-condition variation from RNA-seq count data and demonstrate its usage in improving the distribution of gene-wise dispersion estimates and ultimately, reduce the number of false positives in differential gene expression analysis. We provide the method as a freely available tool, to aid studies using RNA-seq to calculate and characterize the variation present within data prior to perform differential expression analysis. Additionally, we identify candidate genes involved with selection for tameness, which seems to have played a crucial role in the canine domestication.


Genes ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 46
Author(s):  
Athanasios Alexiou ◽  
Dimitrios Zisis ◽  
Ioannis Kavakiotis ◽  
Marios Miliotis ◽  
Antonis Koussounadis ◽  
...  

microRNAs (miRNAs) are small non-coding RNAs (~22 nts) that are considered central post-transcriptional regulators of gene expression and key components in many pathological conditions. Next-Generation Sequencing (NGS) technologies have led to inexpensive, massive data production, revolutionizing every research aspect in the fields of biology and medicine. Particularly, small RNA-Seq (sRNA-Seq) enables small non-coding RNA quantification on a high-throughput scale, providing a closer look into the expression profiles of these crucial regulators within the cell. Here, we present DIANA-microRNA-Analysis-Pipeline (DIANA-mAP), a fully automated computational pipeline that allows the user to perform miRNA NGS data analysis from raw sRNA-Seq libraries to quantification and Differential Expression Analysis in an easy, scalable, efficient, and intuitive way. Emphasis has been given to data pre-processing, an early, critical step in the analysis for the robustness of the final results and conclusions. Through modularity, parallelizability and customization, DIANA-mAP produces high quality expression results, reports and graphs for downstream data mining and statistical analysis. In an extended evaluation, the tool outperforms similar tools providing pre-processing without any adapter knowledge. Closing, DIANA-mAP is a freely available tool. It is available dockerized with no dependency installations or standalone, accompanied by an installation manual through Github.


Sign in / Sign up

Export Citation Format

Share Document