scholarly journals Bioethanol Production from Coconut Fiber Using Alkaline Pretreatment and Acid Hydrolysis Method

Author(s):  
Asyeni Miftahul Jannah ◽  
Faisol Asip
2017 ◽  
Vol 39 (4) ◽  
pp. 423 ◽  
Author(s):  
George Meredite Cunha de Castro ◽  
Norma Maria Barros Benevides ◽  
Maulori Curié Cabral ◽  
Rafael De Souza Miranda ◽  
Enéas Gomes Filho ◽  
...  

 The seaweeds are bio-resource rich in sulfated and neutral polysaccharides. The tropical seaweed species used in this study (Solieria filiformis), after dried, shows 65.8% (w/w) carbohydrate, 9.6% (w/w) protein, 1.7% (w/w) lipid, 7.0% (w/w) moisture and 15.9% (w/w) ash. The dried seaweed was easily hydrolyzed under mild conditions (0.5 M sulfuric acid, 20 min.), generating fermentable monosaccharides with a maximum hydrolysis efficiency of 63.21%. Galactose and glucose present in the hydrolyzed were simultaneously fermented by Saccharomyces cerevisiae when the yeast was acclimated to galactose and cultivated in broth containing only galactose. The kinetic parameters of the fermentation of the seaweed hydrolyzed were Y(P⁄S) = 0.48 ± 0.02 g.g−1, PP = 0.27 ± 0.04 g.L−1.h−1, h = 94.1%, representing a 41% increase in bioethanol productivity. Therefore, S. filiformis was a promising renewable resource of polysaccharides easily hydrolyzed, generating a broth rich in fermentable monosaccharides for ethanol production. 


ALCHEMY ◽  
2018 ◽  
Vol 6 (1) ◽  
pp. 24
Author(s):  
Dewi Yuliani ◽  
Khoirul Achmad Julianto ◽  
Akyunul Jannah

<p class="BodyAbstract">Rice bran is one among many agricultural by-products containing ~50-60 wt.% of carbohydrate. The carbohydrate is a prominent sugar source for bioethanol production. The objective of this research was to study bioethanol production from rice bran by acid and enzymatic treatment. The variations of acid used were dilute hydrochloric acid and sulphuric acid, while variations of enzyme used were amylolytic and cellulolytic enzyme. Ethanol production of acid-hydrolyzed rice bran was 24.95±1.61% (v/v) by hydrochloric acid and 29.57±2.04% (v/v) by sulphuric acid. Ethanol produced by enzymatic hydrolysis was quite low i.e. 6.7±0.04%, and 8.86±0.29% (v/v) for amylolytic and cellulolytic hydrolysate, respectively.</p><p class="BodyAbstract"> </p><p>Keywords: Bioethanol, rice bran, acid hydrolysis, enzymatic hydrolysis</p>


2012 ◽  
pp. 219-240 ◽  
Author(s):  
Rachel Fran Mansa ◽  
Wei-Fang Chen ◽  
Siau-Jen Yeo ◽  
Yan-Yan Farm ◽  
Hafeza Abu Bakar ◽  
...  

2019 ◽  
Vol 268 ◽  
pp. 03002 ◽  
Author(s):  
Dinh Quan Nguyen ◽  
Le Nhat Minh Nguyen ◽  
Thi Tuong An Tran ◽  
Hoai Nhan Cao ◽  
Thi Kim Phung Le ◽  
...  

Alkaline pretreatment has been known as the most popular method to process lignocellulosic materials for bioethanol production due to its simplicity and high efficiency. However, the waste water of the process has a very high basicity, which requires neutralization with acids upon further disposal. In this study, rubber wood saw dust (Hevea brasiliensis) was employed as lignocellulosic material and its pretreatment was inspected with both diluted H2SO4 and NaOH in different combination ways. Hereby, acid was used not only for waste water neutralization but also to contribute to lignin removal. Analysis results showed that an aqueous solution of 2.0 - 2.5 wt.% H2SO4 can be used to treat the biomass followed by alkaline pretreatment. By this so-called combo-pretreatment technique, cellulose was well preserved without significant hydrolysis while the final pretreatment efficiency was up to 63.0%, compared to 48.2% of using only the alkaline solution and 13.7% of using only the acidic solution. Finally, alkaline waste water can be mixed to be neutralized with acidic waste water from the two previous steps. This innovated technique improved the pretreatment efficiency almost without increasing in chemical cost.


2015 ◽  
Vol 14 (2) ◽  
pp. 345-349 ◽  
Author(s):  
Guangsheng Li ◽  
Xia Zhao ◽  
Youjing Lv ◽  
Miaomiao Li ◽  
Guangli Yu

Sign in / Sign up

Export Citation Format

Share Document