scholarly journals NEW LASER PHOTOIONIZATION ISOTOPE SEPARATION SCHEME WITH AUTOIONIZATION SORTING OF HIGHLY EXCITED ATOMS FOR HIGHLY RADIOACTIVE ISOTOPES AND PRODUCTS OF ATOMIC ENERGETICS

2011 ◽  
Vol 8 (2) ◽  
pp. 81-86
Author(s):  
О. В. Глушков ◽  
Г. П. Препелица ◽  
О. Ю. Погосов ◽  
В. Г. Шевчук ◽  
А. А. Свинаренко ◽  
...  
2017 ◽  
Vol 14 (4) ◽  
pp. 83-93
Author(s):  
V. B. Ternovsky ◽  
A. V. Smirnov ◽  
A. A. Kuznetsova ◽  
O. Yu. Khetselius ◽  
V. V. Buyadzhi ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2864
Author(s):  
Eva Kröll ◽  
Miriana Vadalà ◽  
Juliana Schell ◽  
Simon Stegemann ◽  
Jochen Ballof ◽  
...  

Highly porous yttrium oxide is fabricated as ion beam target material in order to produce radioactive ion beams via the Isotope Separation On Line (ISOL) method. Freeze casting allows the formation of an aligned pore structure in these target materials to improve the isotope release. Aqueous suspensions containing a solid loading of 10, 15, and 20 vol% were solidified with a unidirectional freeze-casting setup. The pore size and pore structure of the yttrium oxide freeze-casts are highly affected by the amount of solid loading. The porosity ranges from 72 to 84% and the crosslinking between the aligned channels increases with increasing solid loading. Thermal aging of the final target materials shows that an operation temperature of 1400 °C for 96 h has no significant effect on the microstructure. Thermo-mechanical calculation results, based on a FLUKA simulation, are compared to measured compressive strength and forecast the mechanical integrity of the target materials during operation. Even though they were developed for the particular purpose of the production of short-lived radioactive isotopes, the yttria freeze-cast scaffolds can serve multiple other purposes, such as catalyst support frameworks or high-temperature fume filters.


2018 ◽  
Vol 48 ◽  
pp. 1860103 ◽  
Author(s):  
A. Andrighetto ◽  
F. Borgna ◽  
M. Ballan ◽  
S. Corradetti ◽  
E. Vettorato ◽  
...  

The ISOLPHARM project explores the feasibility of exploiting an innovative technology to produce extremely high specific activity beta-emitting radionuclides as radiopharmaceutical precursors. This technique is expected to produce radiopharmaceuticals that are virtually mainly impossible to obtain in standard production facilities, at lower cost and with less environmental impact than traditional techniques. The groundbreaking ISOLPHARM method investigated in this project has been granted an international patent (INFN). As a component of the SPES (Selective Production of Exotic Species) project at the Istituto Nazionale di Fisica Nucleare–Laboratori Nazionali di Legnaro (INFN–LNL), a new facility will produce radioactive ion beams of neutron-rich nuclei with high purity and a mass range of 80–160 amu. The radioactive isotopes will result from nuclear reactions induced by accelerating 40 MeV protons in a cyclotron to collide on a target of UC[Formula: see text]. The uranium in the target material will be [Formula: see text]U, yielding radioactive isotopes that belong to elements with an atomic number between 28 and 57. Isotope separation on line (ISOL) is adopted in the ISOLPHARM project to obtain pure isobaric beams for radiopharmaceutical applications, with no isotopic contaminations in the beam or subsequent trapping substrate. Isobaric contaminations may potentially affect radiochemical and radionuclide purity, but proper methods to separate chemically different elements can be developed.


2020 ◽  
Vol 95 (7) ◽  
pp. 075403
Author(s):  
V K Saini ◽  
S Talwar ◽  
V V V Subrahmanyam ◽  
R K Mishra ◽  
P K Saini ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2689
Author(s):  
Mattia Manzolaro ◽  
Stefano Corradetti ◽  
Michele Ballan ◽  
Riccardo Salomoni ◽  
Alberto Andrighetto ◽  
...  

In the facilities for the production of Radioactive Ion Beams (RIBs) according to the Isotope Separation On-Line (ISOL) technique, a production target is typically impinged by a high-power primary beam, generating radioactive isotopes for basic research and technological applications. With the aim to guarantee an efficient extraction of the aforementioned isotopes, the production target must work in a high vacuum environment, at temperatures that are usually between 1600 °C and 2200 °C. Its main components are often characterized by intense temperature gradients and consequently by severe thermal stresses. Carbides are widely used for target manufacturing, and in this work a specific method for their thermal and mechanical characterization is presented and discussed. It is based on the comparison between experimental measurements and numerical simulations, with the introduction of the novel Virtual Thermoelastic Parameters approach for the structural verification procedure. High-performance silicon carbides (SiC) are taken as a reference to describe the method. Measured emissivity and thermal conductivity data are presented and discussed, together with the experimental estimation of material limitations for both temperature and stress fields. The aforementioned results can be promptly used for the design process of high-power ISOL targets.


Author(s):  
O.V. Glushkov ◽  
O.Yu. Khetselius ◽  
A.A. Kuznetsova ◽  
A.A. Svinarenko ◽  
V.B. Ternovsky

An effective approach to determining the parameters of the optimal schemes of the method of laser selective photoionization of atoms (elements and isotopes) with finite ionization due to collisions, ionization by a pulsed electric field, ionization through high (Rydberg) states and narrow autoionization resonances for the separation of heavy isotopes has been proposed. in gas separator devices. On the basis of the theory of optimal control and previously developed quantum models for calculating the characteristics of elementary atomic processes, optimization models of isotope separation are numerically implemented in the scheme of selective laser photoionization with ionization due to collisions in gas mixtures, ionization by a pulsed electric field, autoionization, etc. etc. The data obtained quantitatively confirm the promise of the method of laser photoionization with finite ionization due to collisions, ionization by a pulsed electric field, ionization through high-lying (Rydberg) states and narrow autoionization resonances and give a set of parameters for the desired optimal schemes, in particular, the laser pulse optimal shape for rubidium and uranium isotopes.


Author(s):  
Jean-Patrick Connerade
Keyword(s):  

2010 ◽  
Vol 80 (45) ◽  
pp. 330-335 ◽  
Author(s):  
Lindsay Helen Allen

Vitamin B12 deficiency is common in people of all ages who consume a low intake of animal-source foods, including populations in developing countries. It is also prevalent among the elderly, even in wealthier countries, due to their malabsorption of B12 from food. Several methods have been applied to diagnose vitamin B12 malabsorption, including Schilling’s test, which is now used rarely, but these do not quantify percent bioavailability. Most of the information on B12 bioavailability from foods was collected 40 to 50 years ago, using radioactive isotopes of cobalt to label the corrinoid ring. The data are sparse, and the level of radioactivity required for in vivo labeling of animal tissues can be prohibitive. A newer method under development uses a low dose of radioactivity as 14C-labeled B12, with measurement of the isotope excreted in urine and feces by accelerator mass spectrometry. This test has revealed that the unabsorbed vitamin is degraded in the intestine. The percent bioavailability is inversely proportional to the dose consumed due to saturation of the active absorption process, even within the range of usual intake from foods. This has important implications for the assessment and interpretation of bioavailability values, setting dietary requirements, and interpreting relationships between intake and status of the vitamin.


Sign in / Sign up

Export Citation Format

Share Document