scholarly journals DEPENDENCE OF MAXIMAL SENSITIVITY OF THE MAGNETIC FIELD HALL SENSORS BASED ON GRAPHENE ON TEMPERATURE

2021 ◽  
Vol 18 (3) ◽  
pp. 29-37
Author(s):  
І. Bolshakova ◽  
М. Strikha ◽  
Ya. Kost ◽  
F. Shurygin ◽  
Yu. Mykhashchuk ◽  
...  

A theory of graphene-based magnetic field Hall sensors sensitivity dependence on temperature is summarized. The existence of low-temperature range with sensitivity, almost independent on temperature, is predicted; at higher temperatures, when thermally-induced carrier concentration in graphene prevails, the sensitivity decreases with temperature. The experimental studies of the temperature dependence of magnetic sensitivity of Hall sensors on single layer graphene base were carried in temperature range from 300 °K to 430 °K. The values of sensitivity, obtained for room temperatures ~ 230 V·А‑1·Т‑1 exceed essentially the maximum sensitivity of the traditional Hall sensors on silicon base ~ 100  V·А‑1·Т‑1.

2021 ◽  
Author(s):  
◽  
Luke Pratley

<p>We study magneto-tunnelling between two parallel two-dimensional electron gases theoretically, where the electrons have a pseudo-spin-½ degree of freedom that is coupled to their momentum. The two-dimensional electron gases focused on in this work are single layer graphene, bilayer graphene, and single layer molybdenum disulphide. The results are derived using a linear response theory formalism in the weak tunnelling regime, and it is assumed that the electron gases are at zero temperature, with no interactions or disorder. The linear magneto-tunnelling conductance characteristics for an applied in-plane and tilted magnetic field are found to strongly depend on the pseudo-spin structure of the tunnelling matrix and the pseudo-spin's dependence on momentum. For instance, resonances in the linear magneto-tunnelling conductance are sensitive to the pseudo-spin tunnel-coupling across the barrier and how the pseudo-spin eigenstates are coupled to momentum. We discuss how measurements of the magneto-tunnelling conductance can be applied as a spectroscopic tool. We explain how to measure the pseudo-spin tunnel-coupling through least squares parameter fitting of the magneto-tunnelling conductance. We show that the parameters are interdependent, one can use the interdependency to test the consistency between theory and experiment. It is expected that measurements of pseudo-spin tunnel-coupling will be a function of the lattice structure of the double layer system, which suggests these measurements can be used as a spectroscopic tool. Additionally, we investigate in-plane electric fields in single layer graphene to see if their effects can be observed in magneto-tunnelling transport. Then, we perturbatively include the effects of electron-electron interactions in single layer graphene, and find it should dampen the linear tunnelling conductance. We investigate tunnel-coupled , parallel , single layer and bilayer graphene systems. We find that using an in-plane magnetic field, one can generate a valley polarized tunnelling current. This method is unique because it does not require manipulation of the single and bilayer graphene samples through nano-structuring, coupling to electromagnetic fields, application of mechanical strain, or the presence of defects. In particular, the valley polarization is dependent on the pseudo-spin tunnel-coupling between the single and bilayer graphene systems, and the strength of an applied in-plane magnetic field. We explicitly show through analytic derivations how an understanding of linear magneto-tunnelling transport (zero bias limit) can be used to understand non-linear magneto-tunnelling transport (finite bias).</p>


2015 ◽  
Vol 96-97 ◽  
pp. 132-142 ◽  
Author(s):  
Danilo Karličić ◽  
Predrag Kozić ◽  
Sondipon Adhikari ◽  
Milan Cajić ◽  
Tony Murmu ◽  
...  

Author(s):  
S Amir

In the present research, vibration and instability of orthotropic graphene sheet subjected to thermo-magnetic fields are investigated. Orthotropic visco-Pasternak foundation is considered to analyze the influences of orthotropy angle, damping coefficient, normal and shear modulus. New first-order shear deformation theory is utilized due to accuracy of its polynomial functions compared to other theories of plate. Motion equations are obtained by means of Hamilton’s principle and then solved analytically. Influences of various parameters such as small scale, magnetic field, orthotropic viscoelastic surrounding medium, thickness and aspect ratio of single layer graphene sheet on the vibration characteristics of nanoplate are discussed in detail. The results indicate that the stability of single layer graphene sheet is strongly dependent on applied magnetic field. Therefore, the mechanical behavior of single layer graphene sheet can be improved by applying magnetic field. The results of this investigation can be used in design and manufacturing of micro/nano mechanical systems.


RSC Advances ◽  
2019 ◽  
Vol 9 (38) ◽  
pp. 21859-21872 ◽  
Author(s):  
Chaozhi Wang ◽  
Jiang Li ◽  
Shaoyun Guo

Single-layer graphene/TPU composite foams with different graphene content were prepared through a thermally induced phase separation (TIPS) process.


Sign in / Sign up

Export Citation Format

Share Document