scholarly journals APPLICATION OF Al–Mg–Si–Cu SYSTEM ALUMINUM ALLOY COMBINED ANODIC DISSOLUTION FOR PROGNOSIS OF TENSILE STRENGTH LOSS DURING NATURAL EXPOSURE TESTING

Author(s):  
E.N. Kablov ◽  
◽  
V.V. Antipov ◽  
D.V. Chesnokov ◽  
A.E. Kutyrev ◽  
...  
2021 ◽  
pp. 109-118
Author(s):  
A.E. Kutyrev ◽  
◽  
D.V. Chesnokov ◽  
V.V. Antipov ◽  
A.I. Vdovin ◽  
...  

The article presents data on combined anodic dissolution of aluminum alloy of Al–Li–Cu system with not high sensibility to intergranular corrosion, consisting in sequential dissolution in two different solutions, with different modes – the ratio of the specific amount of electricity. The obtained corrosion deteriorations were evaluated by optical and confocal microscopy, the dependences of mass loss, the depth of pitting and intergranular corrosion, as well as changes in the tensile strength of the specific amount of electricity for different modes were determined. As a result of the analysis of the obtained data, models for predicting the loss of tensile strength from the value of the specific amount of electricity (or mass loss) in atmospheric corrosion are proposed.


Alloy Digest ◽  
2000 ◽  
Vol 49 (1) ◽  

Abstract Kaiser Aluminum Alloy 7050 has very high mechanical properties including tensile strength, high fracture toughness, and a high resistance to exfoliation and stress-corrosion cracking. The alloy is typically used in aircraft structural parts. This datasheet provides information on composition, physical properties, hardness, tensile properties, and shear strength as well as fracture toughness and fatigue. It also includes information on forming, heat treating, machining, and joining. Filing Code: AL-366. Producer or source: Tennalum, A Division of Kaiser Aluminum.


2018 ◽  
Vol 141 (1) ◽  
Author(s):  
Heidi Moe Føre ◽  
Stine Wiborg Dahle ◽  
Rune H. Gaarder

This paper presents a study of traditional netting materials subjected to disinfecting chemicals during fish farming and treatment of net cages. A series of tests were performed in order to study the effect of various concentrations of disinfecting chemicals on the tensile strength of Raschel knitted Nylon netting materials. Simulated spill of diluted hydrogen peroxide (HP) to the jump fence during de-lousing did not affect the strength of the applied new and used knotless nylon netting samples. Hydrogen peroxide reacted with biofouling forming gas bubbles, but this did not result in reduced netting strength. The performed tests did not indicate any effect on netting strength from a simulated single, traditional bath disinfection as performed at service stations applying the disinfectant Aqua Des (AD) containing peracetic acid (PAA). However, increasing the AD concentration from 1 to 10% resulted in a strength reduction of 3–6%. Simulated spill of concentrated AD on the jump fence of a net with copper coating residuals resulted in a severe reduction in strength of 45%. This strength loss was probably a consequence of chemical reaction between copper and Aqua Des, and uncoated netting did not experience any loss in strength subjected to the same chemical exposure. These findings from application of AD should also apply to other PAA disinfection chemicals with trade names as, for example, Perfectoxid and Addi Aqua.


2018 ◽  
Vol 913 ◽  
pp. 49-54
Author(s):  
Jian Xin Wu ◽  
Chong Gao ◽  
Rui Yin Huang ◽  
Zhen Shan Liu ◽  
Pi Zhi Zhao

5083 aluminum alloy, due to moderate strength, good thermal conductivity and formability, is an ideal structural material for car production. Influence of cold rolling process on microstructures and mechanical properties of 5083 aluminum alloys is significant and research hotspots. In this paper, cold deformation and annealing processes on grains, tensile properties and anisotropies of 5083 alloy sheets were studied. Results showed that incomplete recrystallization occured on 5083 alloy sheets when annealing temperature was at 300°C. The degree of recrystallization increased slightly with the cold deformation raised from 30% to 50% and varied slightly with prolonged annealing time from 2h to 4h. Furthermore, fully recrystallization occurred on 5083 alloy sheets at the annealing temperature above 320°C. Tensile strength of 5083 alloy sheets reduced significantly when the annealing temperature was raised from 300°C to 320°C, while it varied slightly when the annealing temperature continued to rise to 380°C.


2013 ◽  
Vol 456 ◽  
pp. 451-455
Author(s):  
Jun Yang ◽  
Bo Li ◽  
Qiang Jia ◽  
Yuan Xing Li ◽  
Ming Yue Zhang ◽  
...  

Fatigue test of the welded joint of 5083 aluminum alloy with smooth and height of specimen and the weld zone than the high test measurement and theoretical stress concentration coefficient calculation, the weld reinforcement effect of stress concentration on the fatigue performance of welded joints. The results show that: Smooth tensile strength of specimens for 264MPa, fatigue strength is 95MPa, the tensile strength of the 36%. Higher tensile strength of specimens for 320MPa, fatigue strength is 70MPa, the tensile strength of the 22%. Higher specimen stress concentration coefficient is 1.64, the stress concentration to the weld toe becomes fatigue initiation source, and reduces the fatigue strength and the fatigue life of welded joints.


2000 ◽  
Vol 331-337 ◽  
pp. 1731-1736
Author(s):  
Gosaku Kawai ◽  
Koichi Ogawa ◽  
Ryoji Tsujino ◽  
Hiroshi Yamaguchi ◽  
Hiroshi Tokisue

2010 ◽  
Author(s):  
William A Miller ◽  
Mengdawn Cheng ◽  
Joshua Ryan New ◽  
Levinson Ronnen ◽  
Hashem Akbari ◽  
...  

2006 ◽  
Vol 28 (10) ◽  
pp. 711-716 ◽  
Author(s):  
H. B. M. Lenting ◽  
M. Schroeder ◽  
G. M. Guebitz ◽  
A. Cavaco-Paulo ◽  
J. Shen

CORROSION ◽  
1997 ◽  
Vol 53 (3) ◽  
pp. 179-185 ◽  
Author(s):  
E. McCafferty ◽  
P. Trzaskoma-Paulette

2013 ◽  
Vol 662 ◽  
pp. 251-257
Author(s):  
Ning Xia ◽  
Zhi Min Zhu ◽  
Hui Chen

6005A aluminum alloys were welded at different relative humidity conditions. The effects of relative humidity on the salt fog corrosion of the welding joints were researched. The results showed that the weight loss of the joints after 14 days corrosion was higher than that corroded after 7days, but the corrosion rate was lower. The corrosion rate first increased then declined with the increase of environmental humidity for the joints corroded for 7days. However, when the environmental humidity was 80%, corrosion rate achieved the maximum, when environment humidity was 70%, corrosion rate was the lowest. After corroded for 14 days, corrosion rate was the maximum when the environmental humidity was 50%, and it was the lowest when the environmental humidity was 90%. The tensile strength declined obviously after corrosion.


Sign in / Sign up

Export Citation Format

Share Document