scholarly journals Hydrogen sulfide treatment at the late growth stage of Saccharomyces cerevisiae extends chronological lifespan

Aging ◽  
2021 ◽  
Author(s):  
Arman Ali Shah ◽  
Binghua Liu ◽  
Zhihuai Tang ◽  
Wang Wang ◽  
Wenjie Yang ◽  
...  
2015 ◽  
Vol 41 (1) ◽  
pp. 100 ◽  
Author(s):  
Chao ZHANG ◽  
Dong-Xia ZHAN ◽  
Ya-Li ZHANG ◽  
Hong-Hai LUO ◽  
Ling GOU ◽  
...  

Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 284
Author(s):  
Jackline Abu-Nassar ◽  
Maor Matzrafi

Solanum rostratum Dunal is an invasive weed species that invaded Israel in the 1950s. The weed appears in several germination flashes, from early spring until late summer. Recently, an increase in its distribution range was observed, alongside the identification of new populations in the northern part of Israel. This study aimed to investigate the efficacy of herbicide application for the control of S. rostratum using two field populations originated from the Golan Heights and the Jezreel Valley. While minor differences in herbicide efficacy were recorded between populations, plant growth stage had a significant effect on herbicide response. Carfentrazone-ethyl was found to be highly effective in controlling plants at both early and late growth stages. Metribuzin, oxadiazon, oxyfluorfen and tembutrione showed reduced efficacy when applied at later growth stage (8–9 cm height), as compared to the application at an early growth stage (4–5 cm height). Tank mixes of oxadiazon and oxyfluorfen with different concentrations of surfactant improved later growth stage plant control. Taken together, our study highlights several herbicides that can improve weed control and may be used as chemical solutions alongside diversified crop rotation options. Thus, they may aid in preventing the spread and further buildup of S. rostratum field populations.


2017 ◽  
Vol 37 ◽  
pp. 650-657
Author(s):  
Florian Lehnhardt ◽  
Dong Liang ◽  
Qimin Chen ◽  
Restituto Tocmo ◽  
Michael Rychlik ◽  
...  

HortScience ◽  
2018 ◽  
Vol 53 (6) ◽  
pp. 865-874 ◽  
Author(s):  
Thitipat Weeplian ◽  
Tsair-Bor Yen ◽  
Yunn-Shy Ho

To investigate the effects of light treatments on the growth morphology and chemical constituents of Mesembryanthemum crystallinum L. plants, red (R), blue (B), far red (Fr), and white (W) light-emitting diodes (LEDs) were configured to provide different combinations of light spectra and photosynthetic photon flux densities (PPFDs). In Expt. 1, five light spectra of red/white (RW), red/white/far red (RWFr), red/white/high-intensity far red (RWFrD), red/blue (RB), and red/blue/far red (RBFr) were set up in two 3-layered racks with circulating hydroponic systems. In each light spectrum treatment, the distance between the LED lamps and the transplanting board was regulated to provide low PPFD and high PPFD treatments. In Expt. 2, the effect of Fr was further investigated in plants in the early and late growth stages. RWFr light was modified by covering the Fr lamps to become red/white without far red (RW−Fr) light during the early growth stage, and then removing the covers to provide the Fr spectrum red/white with far red (RW+Fr) during the later growth stage. This study suggested that high PPFD was not beneficial for promoting plant growth in any light spectrum treatment. Among light spectrum treatments at a PPFD of 215 ± 15 μmol·m−2·s−1, RW light produced higher vegetative growth. In the late growth stage, RW and RB combined with Fr light promoted reproductive growth, antioxidant activities, and secondary compounds, such as phenolic compounds, pinitol accumulation, and betacyanins. Therefore, RW (227 μmol·m−2·s−1), RW−Fr (162 μmol·m−2·s−1), and RB (162 μmol·m−2·s−1) are suggested for the early growth stage to promote vegetative growth. Then additional Fr light can be applied in addition to RW for secondary metabolite induction in the late growth stage.


1977 ◽  
Vol 26 (1) ◽  
pp. 373-385
Author(s):  
M.P. Rosin ◽  
A.M. Zimmerman

This study demonstrates that hydrostatic pressure is a potent inductive agent of the petite mutation in cultures of Saccharomyces cerevisiae. The inductive capacity of this mutagen is dependent on the magnitude and the duration of the pressure treatment. Furthermore, the extent of petite induction varies with the growth stage of the culture. Induction occurs in pressure-treated (1-4 X 1-(4) lbf in.-2 or 9–66 X 10(4) kN m-2 for 4 h) log growth cultures but not in stationary or lag phase cultures. Petite induction and cell survival are also dependent on the particular strain of yeast which is pressure-treated. Tetrad analysis and complementation assays demonstrate that pressure-induced petite cells are cytoplasmic in nature. Moreover, induced petite cells show a wide range of suppressivity (2–99%) with a large proportion of the petite cells being highly suppressive.


2019 ◽  
Vol 83 (8) ◽  
pp. 1473-1476
Author(s):  
Koji Masumura ◽  
Sachi Matsukami ◽  
Kumiko Yonekita ◽  
Muneyoshi Kanai ◽  
Kazunori Kume ◽  
...  

2006 ◽  
Vol 20 (4) ◽  
pp. 992-998 ◽  
Author(s):  
Christos A. Damalas ◽  
Kico V. Dhima ◽  
Ilias G. Eleftherohorinos

Experiments were conducted to study the effect of application rate, growth stage, and tank-mixing azimsulfuron or bentazon on the activity of cyhalofop, clefoxydim, and penoxsulam against two morphologically distinctEchinochloaspecies from rice fields in Greece. Mixtures of penoxsulam with MCPA were also evaluated. Cyhalofop (300 to 600 g ai/ha) applied at the three- to four-leaf growth stage provided 62 to 85% control of early watergrass but 41 to 83% control of late watergrass averaged over mixture treatments. Control ranged from 37 to 80% for early watergrass and from 35 to 78% for late watergrass when cyhalofop was applied at the five- to six-leaf growth stage averaged over mixture treatments. Mixtures of cyhalofop with azimsulfuron or bentazon reduced efficacy on both species irrespective of growth stage or cyhalofop application rate compared with cyhalofop alone. Clefoxydim (100 to 250 g ai/ha) applied alone at the three- to four-leaf growth stage provided 98 to 100% control of early watergrass and 91 to 100% control of late watergrass; when clefoxydim was applied alone at the five- to six-leaf growth stage the control obtained was 91 to 100% for early watergrass and 79 to 100% for late watergrass. Mixtures of clefoxydim with azimsulfuron or bentazon reduced efficacy on late watergrass at the early growth stage and on both species at the late growth stage. Penoxsulam (20 to 40 g ai/ha) applied alone provided 94 to 100% control of both species at both growth stages. Mixtures of MCPA with penoxsulam reduced efficacy on late watergrass at the early growth stage and on both species at the late growth stage. Mixtures of penoxsulam with azimsulfuron or bentazon reduced efficacy only on late watergrass at the late growth stage.


Sign in / Sign up

Export Citation Format

Share Document