Control of Early Watergrass (Echinochloa Oryzoides) and Late Watergrass (Echinochloa Phyllopogon) with Cyhalofop, Clefoxydim, and Penoxsulam Applied Alone and in Mixture with Broadleaf Herbicides

2006 ◽  
Vol 20 (4) ◽  
pp. 992-998 ◽  
Author(s):  
Christos A. Damalas ◽  
Kico V. Dhima ◽  
Ilias G. Eleftherohorinos

Experiments were conducted to study the effect of application rate, growth stage, and tank-mixing azimsulfuron or bentazon on the activity of cyhalofop, clefoxydim, and penoxsulam against two morphologically distinctEchinochloaspecies from rice fields in Greece. Mixtures of penoxsulam with MCPA were also evaluated. Cyhalofop (300 to 600 g ai/ha) applied at the three- to four-leaf growth stage provided 62 to 85% control of early watergrass but 41 to 83% control of late watergrass averaged over mixture treatments. Control ranged from 37 to 80% for early watergrass and from 35 to 78% for late watergrass when cyhalofop was applied at the five- to six-leaf growth stage averaged over mixture treatments. Mixtures of cyhalofop with azimsulfuron or bentazon reduced efficacy on both species irrespective of growth stage or cyhalofop application rate compared with cyhalofop alone. Clefoxydim (100 to 250 g ai/ha) applied alone at the three- to four-leaf growth stage provided 98 to 100% control of early watergrass and 91 to 100% control of late watergrass; when clefoxydim was applied alone at the five- to six-leaf growth stage the control obtained was 91 to 100% for early watergrass and 79 to 100% for late watergrass. Mixtures of clefoxydim with azimsulfuron or bentazon reduced efficacy on late watergrass at the early growth stage and on both species at the late growth stage. Penoxsulam (20 to 40 g ai/ha) applied alone provided 94 to 100% control of both species at both growth stages. Mixtures of MCPA with penoxsulam reduced efficacy on late watergrass at the early growth stage and on both species at the late growth stage. Mixtures of penoxsulam with azimsulfuron or bentazon reduced efficacy only on late watergrass at the late growth stage.

2008 ◽  
Vol 22 (4) ◽  
pp. 622-627 ◽  
Author(s):  
Christos A. Damalas ◽  
Kico V. Dhima ◽  
Ilias G. Eleftherohorinos

Experiments were conducted to evaluate the effect of application rate, growth stage, and tank mixing azimsulfuron, bentazon, MCPA, propanil, or cyhalofop on the efficacy of bispyribac–sodium against early watergrass and late watergrass from rice fields in northern Greece. Mixtures of bispyribac–sodium with the insecticides carbaryl, diazinon, and dichlorvos were also evaluated. Bispyribac–sodium (24 to 36 g ai/ha) applied alone at the three- to four-leaf growth stage provided 89 to 100% control of early watergrass and 84 to 100% control of late watergrass. When bispyribac–sodium was applied alone at the five- to six-leaf growth stage of early watergrass and late watergrass, control ranged from 78 to 100% and 71 to 100%, respectively. Mixtures of bispyribac–sodium with azimsulfuron provided better control of both species at any growth stage than bispyribac–sodium applied alone. On the contrary, mixtures of bispyribac–sodium with bentazon, MCPA, or propanil were less effective on both species at any growth stage than bispyribac–sodium applied alone. A slight efficacy reduction occurred on both species for the mixture of bispyribac–sodium with cyhalofop. Mixtures of bispyribac–sodium with the insecticides carbaryl or dichlorvos showed reduced efficacy on both species, whereas increased efficacy on both species was observed for mixtures of bispyribac–sodium with diazinon as compared with the single application of bispyribac–sodium.


HortScience ◽  
2018 ◽  
Vol 53 (6) ◽  
pp. 865-874 ◽  
Author(s):  
Thitipat Weeplian ◽  
Tsair-Bor Yen ◽  
Yunn-Shy Ho

To investigate the effects of light treatments on the growth morphology and chemical constituents of Mesembryanthemum crystallinum L. plants, red (R), blue (B), far red (Fr), and white (W) light-emitting diodes (LEDs) were configured to provide different combinations of light spectra and photosynthetic photon flux densities (PPFDs). In Expt. 1, five light spectra of red/white (RW), red/white/far red (RWFr), red/white/high-intensity far red (RWFrD), red/blue (RB), and red/blue/far red (RBFr) were set up in two 3-layered racks with circulating hydroponic systems. In each light spectrum treatment, the distance between the LED lamps and the transplanting board was regulated to provide low PPFD and high PPFD treatments. In Expt. 2, the effect of Fr was further investigated in plants in the early and late growth stages. RWFr light was modified by covering the Fr lamps to become red/white without far red (RW−Fr) light during the early growth stage, and then removing the covers to provide the Fr spectrum red/white with far red (RW+Fr) during the later growth stage. This study suggested that high PPFD was not beneficial for promoting plant growth in any light spectrum treatment. Among light spectrum treatments at a PPFD of 215 ± 15 μmol·m−2·s−1, RW light produced higher vegetative growth. In the late growth stage, RW and RB combined with Fr light promoted reproductive growth, antioxidant activities, and secondary compounds, such as phenolic compounds, pinitol accumulation, and betacyanins. Therefore, RW (227 μmol·m−2·s−1), RW−Fr (162 μmol·m−2·s−1), and RB (162 μmol·m−2·s−1) are suggested for the early growth stage to promote vegetative growth. Then additional Fr light can be applied in addition to RW for secondary metabolite induction in the late growth stage.


1951 ◽  
Vol 4 (4) ◽  
pp. 450
Author(s):  
EM Hutton

Stage of maturity influences the susceptibility of N. tabacum to virus X. This phenotypic variation is evidenced by a discontinuity of X infection in the inoculated leaves and a lack of systemic invasion of plants inoculated at a late growth stage compared with a complete infection of the inoculated leaves and a rapid systemic invasion of plants inoculated at an early growth stage.


Weed Science ◽  
2009 ◽  
Vol 57 (1) ◽  
pp. 74-80 ◽  
Author(s):  
Santiago M. Ulloa ◽  
Micheal D. K. Owen

Asiatic dayflower has recently become a troublesome weed in eastern Iowa. This weed demonstrates an extended emergence period and there is anecdotal evidence of glyphosate tolerance. Thus, Asiatic dayflower is difficult to manage in glyphosate-resistant (GR) corn and soybean. Greenhouse experiments were conducted to evaluate the response of Asiatic dayflower to glyphosate applied at different rates and growth stages. Field research was conducted in 2005 and 2006 to evaluate different herbicides for Asiatic dayflower control in soybean. PRE herbicides were applied at planting and POST herbicides were applied 21 and 42 d after planting (DAP). In addition, shikimate accumulation in response to glyphosate was compared among Asiatic dayflower and GR and non-GR corn and soybean. Under greenhouse conditions, a single application of glyphosate (0.84 kg ae ha−1) did not control Asiatic dayflower. Only the highest rate evaluated, 13.44 kg ae ha−1 (16X), was lethal to Asiatic dayflower. Even when applied at an early growth stage (two leaves) and using high rates (3.36 kg ae ha−1), glyphosate controlled Asiatic dayflower just 28%. In the field, metribuzin and KIH-485 controlled Asiatic dayflower 80 and 73%, respectively. Early POST applications (21 DAP) of cloransulam or lactofen controlled Asiatic dayflower 80 and 67%, respectively. A single glyphosate application of 0.86 kg ae ha−1 controlled Asiatic dayflower approximately 50%. Glyphosate-treated Asiatic dayflower and non-GR corn and soybeans accumulated shikimate after application. GR corn and soybeans did not accumulate shikimate in response to glyphosate. Twenty-one days after treatment, all the non-GR soybean and corn plants died; however, Asiatic dayflower plants survived.


2014 ◽  
Vol 74 (4) ◽  
pp. 967-976 ◽  
Author(s):  
CHAM Gomes ◽  
FC Silva ◽  
GR Lopes ◽  
CMR Melo

The purpose of this study was to analyze the reproductive cycle of the oyster Crassostrea gasar (= C. brasiliana) in the field and the laboratory. The reproductive cycle of the animals was evaluated in the field at Sambaqui Beach, Florianópolis, SC (27° 29′18″ S and 48° 32′12″ W) from May 2008 through November 2009. In July, the animals were in the resting stage. The early growth stage began in August and was followed by the late growth stage in October. In November and December, the oysters began to enter the mature stage. Females in spawning condition were predominant during these months. The stages of the reproductive cycle were positively associated with temperature (r=0.77, P<0.01) and negatively associated with salinity (r=−0.56, P=0.042). These findings demonstrated that increased temperature and reduced salinity influence the reproductive development of Crassostrea gasar. The condition index (CI) of the animals was also associated with the seawater temperature. The highest values of the condition index were observed during the months when the temperature of the seawater was gradually increasing. A laboratory experiment was performed to test the effect of salinity on the reproductive cycle of the oysters. The experiment was conducted in standardized tanks. The animals were conditioned using two salinities (24‰ and 34‰). The salinity regime influenced the development of the gonadal tissue of the oysters. A salinity of 24‰ produced greater reproductive development.


2014 ◽  
Vol 28 (3) ◽  
pp. 443-453 ◽  
Author(s):  
Sandeep S. Rana ◽  
Jason K. Norsworthy ◽  
Robert C. Scott

Imazosulfuron is a sulfonylurea herbicide recently labeled in U.S. rice at a maximum rate of 336 g ai ha−1. Soybean is prone to drift of herbicides from rice fields in the southern United States because these crops are often grown in close proximity. Field trials were conducted to determine the effect of low rates of imazosulfuron applied to nonsulfonylurea-resistant soybean at different growth stages. Soybean was treated at the vegetative cotyledonary (VC); vegetative second trifoliate (V2); vegetative sixth trifoliate (V6); and reproductive full bloom (R2) growth stages with 1/256 (1.3 g ha−1) to 1/4 (84.1 g ha−1) times (X) the maximum labeled rate of imazosulfuron. Soybean was injured regardless of application rate or timing. At 2 wk after treatment (WAT), imazosulfuron injured soybean 23 to 79, 44 to 76, 32 to 68, and 14 to 50% when applied at the VC, V2, V6, and R2 growth stages, respectively, where the highest injury was caused by the highest imazosulfuron rate (1/4X). However, by 20 wk after planting (WAP), soybean treated with imazosulfuron at the VC and V2 growth stages had only 0 to 17% and 8 to 53% injury, respectively. At higher rates [1/8 (42 g ha−1) and 1/4X] of imazosulfuron, soybean treated at the VC growth stage recovered more from injury than did soybean treated at the V2 growth stage. Soybean treated with imazosulfuron at the V6 and R2 growth stages had better recovery from the injury at the lower two rates [1/256 and 1/128X (2.6 g ha−1)] than at the higher rates [1/64 (5.3 g ha−1) to 1/4X]. Imazosulfuron, at all rates tested, delayed soybean maturity by 1 to 4, 2 to 6, 1 to 12, and 3 to 16 d for the VC, V2, V6, and R2 growth stages, respectively. Yield loss was greater when imazosulfuron was applied at V6 and R2 compared to applications at VC and V2. Results from this research indicate that imazosulfuron can severely injure soybean regardless of the growth stage at which drift occurs; however, soybean injured by imazosulfuron at early growth stages (VC and V2) has a better chance of recovery over time compared to drift at later growth stages (V6 and R2).


Weed Science ◽  
1990 ◽  
Vol 38 (1) ◽  
pp. 45-49 ◽  
Author(s):  
Timothy T. Obrigawitch ◽  
William H. Kenyon ◽  
Henry Kuratle

Field, greenhouse, and laboratory studies were conducted to examine the effect of application timing on the activity of DPX-V9360 on rhizome johnsongrass. Field and greenhouse studies indicated that johnsongrass treated with postemergence applications of DPX-V9360 at late growth stages (>5 leaves) was controlled more effectively than when treated in early growth stages (<5 leaves). Johnsongrass control was optimized with split-postemergence applications (treatments applied at early and late growth stages) in field studies compared to a single postemergence application at either early or late growth stages. The pattern of translocation of 2-14C (pyrimidine)-labeled DPX-V9360 applied to a fully expanded johnsongrass leaf did not differ significantly between three different growth stages of 10-, 30-, and 60-cm height. Over 60% of the absorbed14C remained in the treated leaf. Most of the translocated14C moved out of the treated leaf within 3 days after application and distributed to the shoot in greater quantities than to the rhizomes. About 40% of14C-DPX-V9360 applied to the leaf surfaces of a tolerant species (corn) or susceptible species (johnsongrass) was absorbed into the leaf. Corn metabolized over 90% of absorbed DPX-V9360 within 20 h, while there was no perceptible metabolism of DPX-V9360 in johnsongrass leaves after 24 h. Late growth stage and split-postemergence applications appear to provide more effective control than early growth stage applications because of better control of regrowth (new shoot emergence from rhizomes after application) and because tillering and plant emergence are more nearly complete at application time.


2014 ◽  
Vol 28 (1) ◽  
pp. 233-242 ◽  
Author(s):  
Stevan Z. Knezevic ◽  
Strahinja Stepanovic ◽  
Avishek Datta

Propane flaming could be an alternative tool for PRE control or suppression of early-emerging weeds in organic and conventional crops. The objective of this study was to test the tolerance of selected early-season weeds to broadcast flaming in no-till systems. Four winter annuals (tansy mustard, henbit, cutleaf evening primrose, and field pennycress), one summer annual (common lambsquarters), and one perennial (dandelion) species were included in the study. Except for dandelion, the response to propane flaming was evaluated at two growth stages. Flaming treatments were applied using an all-terrain-vehicle-mounted flamer moving 4.8 km h−1, and propane pressure was adjusted to deliver doses of 0 (nonflamed control), 22, 34, 48, 67, and 90 kg ha−1. The response of each species to propane doses was described by log-logistic models based on visual ratings of weed control and dry matter reduction. Response to broadcast flaming varied among species and growth stages. Common lambsquarters, tansy mustard, and henbit were more susceptible to flaming than cutleaf evening primrose, field pennycress, and dandelion. On the basis of visual ratings, propane doses between 54 and 62 kg ha−1 effectively controlled (90% control) common lambsquarters at the early growth stage (five-leaf), tansy mustard at both growth stages (nine-leaf and flowering), and henbit (flowering). However, a higher propane dose (> 80 kg ha−1) was necessary to obtain 90% control of common lambsquarters in later growth stage (11-leaf) and early growth stage of henbit (nine-leaf). Cutleaf evening primrose, field pennycress, and dandelion exhibited higher levels of tolerance to broadcast flaming. A 90% control of these species was not achieved even with the highest propane dose (90 kg ha−1) utilized in the study. Results of this study indicate that a single application of broadcast flaming can be an effective tool for controlling tansy mustard, henbit, and common lambsquarters and temporary suppression of cutleaf evening primrose, field pennycress, and dandelion.


Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 284
Author(s):  
Jackline Abu-Nassar ◽  
Maor Matzrafi

Solanum rostratum Dunal is an invasive weed species that invaded Israel in the 1950s. The weed appears in several germination flashes, from early spring until late summer. Recently, an increase in its distribution range was observed, alongside the identification of new populations in the northern part of Israel. This study aimed to investigate the efficacy of herbicide application for the control of S. rostratum using two field populations originated from the Golan Heights and the Jezreel Valley. While minor differences in herbicide efficacy were recorded between populations, plant growth stage had a significant effect on herbicide response. Carfentrazone-ethyl was found to be highly effective in controlling plants at both early and late growth stages. Metribuzin, oxadiazon, oxyfluorfen and tembutrione showed reduced efficacy when applied at later growth stage (8–9 cm height), as compared to the application at an early growth stage (4–5 cm height). Tank mixes of oxadiazon and oxyfluorfen with different concentrations of surfactant improved later growth stage plant control. Taken together, our study highlights several herbicides that can improve weed control and may be used as chemical solutions alongside diversified crop rotation options. Thus, they may aid in preventing the spread and further buildup of S. rostratum field populations.


Sign in / Sign up

Export Citation Format

Share Document