scholarly journals HX-1171 attenuates pancreatic β-cell apoptosis and hyperglycemia-mediated oxidative stress via Nrf2 activation in streptozotocin-induced diabetic model

Oncotarget ◽  
2018 ◽  
Vol 9 (36) ◽  
pp. 24260-24271 ◽  
Author(s):  
Jimin Kim ◽  
Su-Hyun Shin ◽  
Jong-Koo Kang ◽  
Jae Wha Kim
2011 ◽  
Vol 16 (5) ◽  
pp. 539-548 ◽  
Author(s):  
Xiuli Lu ◽  
Jianli Liu ◽  
Fangfang Hou ◽  
Zhenqing Liu ◽  
Xiangyu Cao ◽  
...  

2014 ◽  
Vol 224 (3) ◽  
pp. 215-224 ◽  
Author(s):  
Suwattanee Kooptiwut ◽  
Wanthanee Hanchang ◽  
Namoiy Semprasert ◽  
Mutita Junking ◽  
Thawornchai Limjindaporn ◽  
...  

Hypogonadism in men is associated with an increased incidence of type 2 diabetes. Supplementation with testosterone has been shown to protect pancreatic β-cell against apoptosis due to toxic substances including streptozotocin and high glucose. One of the pathological mechanisms of glucose-induced pancreatic β-cell apoptosis is the induction of the local rennin–angiotensin–aldosterone system (RAAS). The role of testosterone in regulation of the pancreatic RAAS is still unknown. This study aims to investigate the protective action of testosterone against glucotoxicity-induced pancreatic β-cell apoptosis via alteration of the pancreatic RAAS pathway. Rat insulinoma cell line (INS-1) cells or isolated male mouse islets were cultured in basal and high-glucose media in the presence or absence of testosterone, losartan, and angiotensin II (Ang II), then cell apoptosis, cleaved caspase 3 expression, oxidative stress, and expression of angiotensin II type 1 receptor (AGTR1) and p47phox mRNA and protein were measured. Testosterone and losartan showed similar effects in reducing pancreatic β-cell apoptosis. Testosterone significantly reduced expression of AGTR1 protein in INS-1 cells cultured in high-glucose medium or high-glucose medium with Ang II. Testosterone decreased the expression of AGTR1 and p47phox mRNA and protein in comparison with levels in cells cultured in high-glucose medium alone. Furthermore, testosterone attenuated superoxide production when co-cultured with high-glucose medium. In contrast, when cultured in basal glucose, supplementation of testosterone did not have any effect on cell apoptosis, oxidative stress, and expression of AGT1R and p47phox. In addition, high-glucose medium did not increase cleaved caspase 3 in AGTR1 knockdown experiments. Thus, our results indicated that testosterone prevents pancreatic β-cell apoptosis due to glucotoxicity through reduction of the expression of ATGR1 and its signaling pathway.


2018 ◽  
Vol 234 (6) ◽  
pp. 8411-8425 ◽  
Author(s):  
Mohammad Javad Saeedi Borujeni ◽  
Ebrahim Esfandiary ◽  
Azar Baradaran ◽  
Ali Valiani ◽  
Mustafa Ghanadian ◽  
...  

Cell Research ◽  
2007 ◽  
Vol 17 (11) ◽  
pp. 966-968 ◽  
Author(s):  
Ruo Lan Xiang ◽  
Yan Li Yang ◽  
Jin Zuo ◽  
Xin Hua Xiao ◽  
Yong Sheng Chang ◽  
...  

Author(s):  
Kanchana Suksri ◽  
Namoiy Semprasert ◽  
Mutita Junking ◽  
Suchanoot Kutpruek ◽  
Thawornchai Limjindaporn ◽  
...  

Long-term medication with dexamethasone (a synthetic glucocorticoid (GC) drug) results in hyperglycemia, or steroid-induced diabetes. Although recent studies revealed dexamethasone directly induces pancreatic β-cell apoptosis, its molecular mechanisms remain unclear. In our initial analysis of mRNA transcripts, we discovered the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) pathway may be involved in dexamethasone-induced pancreatic β-cell apoptosis. In the present study, a mechanism of dexamethasone-induced pancreatic β-cell apoptosis through the TRAIL pathway was investigated in cultured cells and isolated mouse islets. INS-1 cells were cultured with and without dexamethasone in the presence or absence of a glucocorticoid receptor (GR) inhibitor, RU486. We found that dexamethasone induced pancreatic β-cell apoptosis in association with the upregulation of TRAIL mRNA and protein expression. Moreover, dexamethasone upregulated the TRAIL death receptor (DR5) protein but suppressed the decoy receptor (DcR1) protein. Similar findings were observed in mouse isolated islets: dexamethasone increased TRAIL and DR5 compared to that of control mice. Furthermore, dexamethasone stimulated pro-apoptotic signaling including superoxide production, caspase-8, -9, and -3 activities, NF-B, and Bax, but repressed the anti-apoptotic protein, Bcl-2. All these effects were inhibited by the GR-inhibitor, RU486. Furthermore, knock down DR5 decreased dexamethasone-induced caspase 3 activity. Caspase-8 and caspase-9 inhibitors protected pancreatic β-cells from dexamethasone-induced apoptosis. Taken together, dexamethasone induced pancreatic β-cell apoptosis by binding to the GR and inducing DR5 and TRAIL pathway.


2018 ◽  
Vol 51 (6) ◽  
pp. 2955-2971 ◽  
Author(s):  
Shuling Song ◽  
Jin Tan ◽  
Yuyang Miao ◽  
Zuoming Sun ◽  
Qiang  Zhang

Background/Aims: Intermittent hypoxia (IH) causes apoptosis in pancreatic β-cells, but the potential mechanisms remain unclear. Endoplasmic reticulum (ER) stress, autophagy, and apoptosis are interlocked in an extensive crosstalk. Thus, this study aimed to investigate the contributions of ER stress and autophagy to IH-induced pancreatic β-cell apoptosis. Methods: We established animal and cell models of IH, and then inhibited autophagy and ER stress by pharmacology and small interfering RNA (siRNA) in INS-1 cells and rats. The levels of biomarkers for autophagy, ER stress, and apoptosis were evaluated by immunoblotting and immunofluorescence. The number of autophagic vacuoles was observed by transmission electron microscopy. Results: IH induced autophagy activation both in vivo and in vitro, as evidenced by increased autophagic vacuole formation and LC3 turnover, and decreased SQSTM1 level. The levels of ER-stress-related proteins, including GRP78, CHOP, caspase 12, phosphorylated (p)-protein kinase RNA-like ER kinase (PERK), p-eIF2α, and activating transcription factor 4 (ATF4) were increased under IH conditions. Inhibition of ER stress with tauroursodeoxycholic acid or 4-phenylbutyrate partially blocked IH-induced autophagy in INS-1 cells. Furthermore, inhibition of PERK with GSK2606414 or siRNA blocked the ERstress-related PERK/eIF2α/ATF4 signaling pathway and inhibited autophagy induced by IH, which indicates that IH-induced autophagy activation is dependent on this signaling pathway. Promoting autophagy with rapamycin alleviated IH-induced apoptosis, whereas inhibition of autophagy with chloroquine or autophagy-related gene (Atg5 and Atg7) siRNA aggravated pancreatic β-cell apoptosis caused by IH. Conclusion: IH induces autophagy activation through the ER-stress-related PERK/eIF2α/ATF4 signaling pathway, which is a protective response to pancreatic β-cell apoptosis caused by IH.


Sign in / Sign up

Export Citation Format

Share Document