trail death receptor
Recently Published Documents


TOTAL DOCUMENTS

34
(FIVE YEARS 7)

H-INDEX

16
(FIVE YEARS 1)

Leukemia ◽  
2021 ◽  
Author(s):  
Min Lu ◽  
Lijuan Xia ◽  
Nada Elmansy ◽  
Cara Clementelli ◽  
Douglas Tremblay ◽  
...  

AbstractCurrent therapy for myelofibrosis (MF) results in a limited prolongation of patient survival. In order to improve treatment outcomes, we developed a strategy to effectively deplete MF hematopoietic stem/progenitor cells (HSPCs). In the present study, an imipridone, ONC201, was combined with RG7112, an antagonist of MDM2, a p53 negative regulator, to activate downstream events of the p53 and TNF-related apoptosis-inducing ligand (TRAIL)/death receptor (DR) pathways. As compared to treatment with the individual drugs, the combination of ONC201 and RG7112 promoted greater degrees of apoptosis of MF CD34+ cells through activation of both p53-dependent and -independent pathways. Importantly, treatment with ONC201-RG7112 not only decreased the number of JAK2V617F+ and calreticulin mutated colonies assayed from MF CD34+ cells, but allowed for the persistence or appearance of JAK2 wild type colonies. Treatment with ONC201 combined with RG7112 could be a potentially effective strategy for treating MF patients.


Author(s):  
Kanchana Suksri ◽  
Namoiy Semprasert ◽  
Mutita Junking ◽  
Suchanoot Kutpruek ◽  
Thawornchai Limjindaporn ◽  
...  

Long-term medication with dexamethasone (a synthetic glucocorticoid (GC) drug) results in hyperglycemia, or steroid-induced diabetes. Although recent studies revealed dexamethasone directly induces pancreatic β-cell apoptosis, its molecular mechanisms remain unclear. In our initial analysis of mRNA transcripts, we discovered the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) pathway may be involved in dexamethasone-induced pancreatic β-cell apoptosis. In the present study, a mechanism of dexamethasone-induced pancreatic β-cell apoptosis through the TRAIL pathway was investigated in cultured cells and isolated mouse islets. INS-1 cells were cultured with and without dexamethasone in the presence or absence of a glucocorticoid receptor (GR) inhibitor, RU486. We found that dexamethasone induced pancreatic β-cell apoptosis in association with the upregulation of TRAIL mRNA and protein expression. Moreover, dexamethasone upregulated the TRAIL death receptor (DR5) protein but suppressed the decoy receptor (DcR1) protein. Similar findings were observed in mouse isolated islets: dexamethasone increased TRAIL and DR5 compared to that of control mice. Furthermore, dexamethasone stimulated pro-apoptotic signaling including superoxide production, caspase-8, -9, and -3 activities, NF-B, and Bax, but repressed the anti-apoptotic protein, Bcl-2. All these effects were inhibited by the GR-inhibitor, RU486. Furthermore, knock down DR5 decreased dexamethasone-induced caspase 3 activity. Caspase-8 and caspase-9 inhibitors protected pancreatic β-cells from dexamethasone-induced apoptosis. Taken together, dexamethasone induced pancreatic β-cell apoptosis by binding to the GR and inducing DR5 and TRAIL pathway.


Biomolecules ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 572
Author(s):  
Longfei Deng ◽  
Xuan Zhai ◽  
Ping Liang ◽  
Hongjuan Cui

The tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) shows a promising therapeutic potential in cancer treatment as it exclusively causes apoptosis in a broad spectrum of cancer cells through triggering the extrinsic apoptosis pathway via binding to cognate death receptors, with negligible toxicity in normal cells. However, most cancers, including glioblastoma multiforme (GBM), display TRAIL resistance, hindering its application in clinical practice. Recent studies have unraveled novel mechanisms in regulating TRAIL-induced apoptosis in GBM and sought effective combinatorial modalities to sensitize GBM to TRAIL treatment, establishing pre-clinical foundations and the reasonable expectation that the TRAIL/TRAIL death receptor axis could be harnessed to treat GBM. In this review, we will revisit the status quo of the mechanisms of TRAIL resistance and emerging strategies for sensitizing GBM to TRAIL-induced apoptosis and also discuss opportunities of TRAIL-based combinatorial therapies in future clinical use for GBM treatment.


Biomolecules ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 499
Author(s):  
You-Take Oh ◽  
Shi-Yong Sun

Death ligands such as tumor necrosis factor-related apoptosis-inducing ligand (TRAIL; TNFSF10) and their corresponding death receptors (e.g., DR5) not only initiate apoptosis through activation of the extrinsic apoptotic pathway but also exert non-apoptotic biological functions such as regulation of inflammation and cancer metastasis. The involvement of the TRAIL/death receptor signaling pathway in the regulation of cancer invasion and metastasis is complex as both positive and negative roles have been reported. The underlying molecular mechanisms are even more complicated. This review will focus on discussing current knowledge in our understanding of the involvement of TRAIL/death receptor-mediated signaling in the regulation of cancer cell invasion and metastasis.


2020 ◽  
Vol 7 (3) ◽  
pp. 54-61
Author(s):  
Dipesh Kumar Yadav ◽  
Ze Sheng Wang ◽  
Yong Fei Hua ◽  
Cai De Lu

Introduction: Tumor necrosis factor related-apoptosis-inducing ligand (TRAIL) is a powerful and selective activator of apoptosis in many cancer cells. We aim to investigate the expression and significance of TRAIL death receptor DR4 and DR5 in pancreatic cancer (PC) tissues. Method: Twenty-eight histologically verified samples of PC tissue were collected between 2018 and 2019. TRAIL death receptor expression profiles were determined by immunohistochemistry. Result: Death receptor DR4 and DR5 were expressed in the PC tissue and the adjacent non-cancerous pancreatic tissues, the expression of DR4 and DR5 in the PC tissue was significantly higher than that of the adjacent non-cancerous pancreatic tissues (p<0.05). Additionally, in both the tissue group, the expression of DR4 was significantly stronger than the DR5 (p<0.05). To assess the relationship between DR4 and DR5 expression, differentiation, and tumor staging of PC, the result reveals that the expression of DR4 and DR5 was significantly higher in stage I tumors than the stage II, III, IV tumors (p<0.05). In contrast, the expression of DR4 and DR5 was decreased with a decrease in the degree of differentiation of tumors. However, the difference was not statistically significant. Conclusion: The membrane expression of TRAIL death receptor DR4 and DR5 is greater in PC than in the adjacent non-cancerous pancreatic tissues. Furthermore, increased membrane expression of TRAIL death receptor DR4 and DR5 in stage I PC and well-differentiated PC may predict the prognosis and feasibility of using TRAIL gene therapy as a treatment option for early PC.


Cells ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1851
Author(s):  
Won Hyeok Lee ◽  
Myung Woul Han ◽  
Song Hee Kim ◽  
Daseul Seong ◽  
Jae Hee An ◽  
...  

Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) has attracted attention as a potential candidate for cancer therapy. However, many primary cancers are resistant to TRAIL, even when combined with standard chemotherapy. The mechanism of TRAIL resistance in cancer cells has not been fully elucidated. The TRAIL death receptor (DR) 3′-untranslated region (3′-UTR) is reported to contain AU-rich elements (AREs) that are important for regulating DR mRNA stability. However, the mechanisms by which DR mRNA stability is determined by its 3′-UTR are unknown. We demonstrate that tristetraprolin (TTP), an ARE-binding protein, has a critical function of regulating DR mRNA stability. DR4 mRNA contains three AREs and DR5 mRNA contains four AREs in 3′-UTR. TTP bound to all three AREs in DR4 and ARE3 in DR5 and enhanced decay of DR4/5 mRNA. TTP overexpression in colon cancer cells changed the TRAIL-sensitive cancer cells to TRAIL-resistant cells, and down-regulation of TTP increased TRAIL sensitivity via DR4/5 expression. Therefore, this study provides a molecular mechanism for enhanced levels of TRAIL DRs in cancer cells and a biological basis for posttranscriptional modification of TRAIL DRs. In addition, TTP status might be a biomarker for predicting TRAIL response when a TRAIL-based treatment is used for cancer.


Cancers ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 954 ◽  
Author(s):  
Wajant

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and its death receptors TRAILR1/death receptor 4 (DR4) and TRAILR2/DR5 trigger cell death in many cancer cells but rarely exert cytotoxic activity on non-transformed cells. Against this background, a variety of recombinant TRAIL variants and anti-TRAIL death receptor antibodies have been developed and tested in preclinical and clinical studies. Despite promising results from mice tumor models, TRAIL death receptor targeting has failed so far in clinical studies to show satisfying anti-tumor efficacy. These disappointing results can largely be explained by two issues: First, tumor cells can acquire TRAIL resistance by several mechanisms defining a need for combination therapies with appropriate sensitizing drugs. Second, there is now growing preclinical evidence that soluble TRAIL variants but also bivalent anti-TRAIL death receptor antibodies typically require oligomerization or plasma membrane anchoring to achieve maximum activity. This review discusses the need for oligomerization and plasma membrane attachment for the activity of TRAIL death receptor agonists in view of what is known about the molecular mechanisms of how TRAIL death receptors trigger intracellular cell death signaling. In particular, it will be highlighted which consequences this has for the development of next generation TRAIL death receptor agonists and their potential clinical application.


2018 ◽  
Vol 37 (4) ◽  
pp. 733-748 ◽  
Author(s):  
Xun Yuan ◽  
Ambikai Gajan ◽  
Qian Chu ◽  
Hua Xiong ◽  
Kongming Wu ◽  
...  

2018 ◽  
Vol 114 ◽  
pp. 150-162 ◽  
Author(s):  
A. Nonpunya ◽  
B. Sethabouppha ◽  
S. Rufini ◽  
N. Weerapreeyakul

Sign in / Sign up

Export Citation Format

Share Document