scholarly journals Real-time methylation-specific PCR for the evaluation of methylation status of MGMT gene in glioblastoma

Oncotarget ◽  
2018 ◽  
Vol 9 (45) ◽  
pp. 27728-27735 ◽  
Author(s):  
Masaki Yoshioka ◽  
Tomoo Matsutani ◽  
Ayaka Hara ◽  
Seiichiro Hirono ◽  
Takaki Hiwasa ◽  
...  
Author(s):  
Li Zhang ◽  
Sijuan Tian ◽  
Minyi Zhao ◽  
Ting Yang ◽  
Shimin Quan ◽  
...  

Background: Smad3 is a pivotal intracellular mediator for participating in the activation of multiple immune signal pathway. Objective: The epigenetic regulation mechanism of the positive immune factor Smad3 in cervical cancer remains unknown. Therefore, the epigenetic regulation on Smad3 is investigated in this study. Methods: The methylation status of SMAD3 was detected by Methylation-specific PCR (MS-PCR) and Quantitative Methylation-specific PCR (MS-qPCR) in cervical cancer tissues and cell lines. The underlying molecular mechanisms of SUV39H1-DNMT1-Smad3 regulation was elucidated using cervical cancer cell lines containing siRNA or/and overexpression system. Confirmation of the regulation of DNMT1 by SUV39H1 used Chromatin immunoprecipitation-qPCR (ChIP-qPCR). The statistical methods used for comparing samples between groups were paired t tests and one-way ANOVAs. Results: H3K9me3 protein which regulated by SUV39H1 directly interacts with the DNMT1 promoter region to regulate its expression in cervical cancer cells, resulting in the reduce expression of the downstream target gene DNMT1. In addition, DNMT1 mediates the epigenetic modulation of the SMAD3 gene by directly binding to its promoter region. The depletion of DNMT1 effectively restores the expression of Smad3 in vitro. Moreover, in an in vivo assay, the expression profile of SUV39H1-DNMT1 was found to correlate with Smad3 expression in accordance with the expression at the cellular level. Notably, the promoter region of SMAD3 was hypermethylated in cervical cancer tissues, and this hypermethylation inhibits the subsequent gene expression. Conclusion: These results indicate that SUV39H1-DNMT1 is a crucial Smad3 regulatory axis in cervical cancer. SUV39H1-DNMT1 axis may provide a potential therapeutic target for the treatment of cervical cancer.


Cancers ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1598 ◽  
Author(s):  
Francesco Picardo ◽  
Antonella Romanelli ◽  
Laura Muinelo-Romay ◽  
Tommaso Mazza ◽  
Caterina Fusilli ◽  
...  

Epigenetic modifications of glyco-genes have been documented in different types of cancer and are tightly linked to proliferation, invasiveness, metastasis, and drug resistance. This study aims to investigate the diagnostic, prognostic, and therapy-response predictive value of the glyco-gene B4GALT1 in colorectal cancer (CRC) patients. A Kaplan–Meier analysis was conducted in 1418 CRC patients (GEO and TCGA datasets) to assess the prognostic and therapy-response predictive values of the aberrant expression and methylation status of B4GALT1. Quantitative methylation-specific PCR (QMSP) and droplet digital quantitative methylation-specific PCR (dd-QMSP) were respectively used to detect hypermethylated B4GALT1 in metastasis and plasma in four cohorts of metastatic CRC cases (mCRC). Both the downregulated expression and promoter hypermethylation of B4GALT1 have a negative prognostic impact on CRC. Interestingly a low expression level of B4GALT1 was significantly associated with poor cetuximab response (progression-free survival (PFS) p = 0.01) particularly in wild-type (WT)-KRAS patients (p = 0.03). B4GALT1 promoter was aberrantly methylated in liver and lung metastases. The detection of hypermethylated B4GALT1 in plasma of mCRC patients showed a highly discriminative receiver operating characteristic (ROC) curve profile (area under curve (AUC) value 0.750; 95% CI: 0.592–0.908, p = 0.008), clearly distinguishing mCRC patients from healthy controls. Based on an optimal cut-off value defined by the ROC analysis, B4GALT1 yield a 100% specificity and a 50% sensitivity. These data support the potential value of B4GALT1 as an additional novel biomarker for the prediction of cetuximab response, and as a specific and sensitive diagnostic circulating biomarker that can be detected in CRC.


2007 ◽  
Vol 35 (8) ◽  
pp. 498-502 ◽  
Author(s):  
Robert T. Pu ◽  
Zong-Mei Sheng ◽  
Claire W. Michael ◽  
Michael G. Rhode ◽  
Douglas P. Clark ◽  
...  

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4296-4296
Author(s):  
Satoshi Hamanoue ◽  
Miharu Yabe ◽  
Hiromasa Yabe ◽  
Takayuki Yamashita

Abstract Fanconi anemia (FA) is an inherited bone marrow failure syndrome with multiple complementation groups, characterized by genomic instability and predisposition to MDS and AML. Recent evidence indicates that multiple FA proteins are involved in DNA repair. Thus, increased genetic damage and secondary dysregulation of cell proliferation, differentiation and apoptosis are thought to play important roles in the development of bone marrow failure and subsequent progression to MDS/AML. However, little is known about molecular abnormalities responsible for these hematological disorders. Numerous studies indicated that epigenetic silencing of p15/INK4B, an inhibitor of cyclin-dependent kinases, plays an important role in the pathogenesis of MDS and AML. In the present study, we examined methylation status of 5′ CpG islands of the p15 gene in bone marrow mononuclear cells of FA patients, using methylation-specific PCR (MSP) and combined bisulfite restriction analysis (COBRA). Bone marrow samples were analyzed in 10 patients and serially studied in 4 of them. Hypermethylation of the p15 promoter region was detected in 5 patients (50%). This group included 3 patients with MDS: FA28-1 with refractory anemia (RA), FA87 with RAEB (RA with excess of blasts), and FA88 with later development of RA and progression to RAEB; whereas myelodysplasia was not observed in 2 patients (FA89, FA90). In two cases (FA88, FA90), p15 hypermethylation became negative during their courses, perhaps because of decreased myeloid cells. On the other hand, none of 5 patients without p15 hypermethylation had MDS. These results suggest that p15 hypermethylation is associated with development of MDS and occurs in the early phase of clonal evolution in the disease. Methylation status of p15 may be a useful prognostic factor of FA. Patient Age at onset (year old) Time from onset (month) Cytopenia MDS Cytogenetic abnormalities p15 methylation MSP b p15 methylation COBRA c a siblings, b MSP: methylation specific PCR, c COBRA: combined bisulfite restriction analysis, d ND: not determined FA28-1a 5 128 severe RA − − + 133 severe RA − + ++ FA87 8 252 severe RAEB + + +++ FA88 5 31 moderate − − + +++ 45 severe RA + − − 58 severe RAEB + + + FA89 5 49 mild − − + + 56 severe − − + + FA90 2 2 mild − − + ++ 31 severe − − − − FA28-2a 5 51 mild − − − NDd FA28-3a 3 12 mild − − − NDd FA47 3 15 mild − − − NDd FA68 5 46 moderate − − − NDd FA91 5 129 mild − − − NDd


Author(s):  
Rosa Della Monica ◽  
Mariella Cuomo ◽  
Roberta Visconti ◽  
Annabella di Mauro ◽  
Michela Buonaiuto ◽  
...  

Unresectable neuroendocrine neoplasms (NENs) often poorly respond to standard therapeutic approaches. Alkylating agents, in particular temozolomide, commonly used to treat high-grade brain tumors including glioblastomas, have recently been tested in advanced or metastatic NENs, where they showed promising response rates. In glioblastomas, prediction of response to temozolomide is based on the assessment of the methylation status of the MGMT gene, as its product, O-6-methylguanine-DNA methyltransferase, may counteract the damaging effects of the alkylating agent. However, in NENs, such a biomarker has not been validated yet. Thus, we have investigated MGMT methylation in 42 NENs of different grades and from various sites of origin by two different approaches: in contrast to methylation-specific PCR (MSP), which is commonly used in glioblastoma management, amplicon bisulfite sequencing (ABS) is based on high resolution next-generation sequencing and interrogates several additional CpG sites compared to those covered by MSP. Overall, we found MGMT methylation in 74% (31/42) of the NENs investigated. A higher methylation degree was observed in well-differentiated tumors and in tumors originating in the gastrointestinal tract. Comparing MSP and ABS results, we demonstrate that the region analyzed by the MSP test is sufficiently informative of the MGMT methylation status in NENs, suggesting that this predictive parameter could routinely be interrogated also in NENs


BioTechniques ◽  
2016 ◽  
Vol 60 (2) ◽  
Author(s):  
Simeon Santourlidis ◽  
Foued Ghanjati ◽  
Agnes Beermann ◽  
Thomas Hermanns ◽  
Cédric Poyet

Sign in / Sign up

Export Citation Format

Share Document