scholarly journals miR-302b enhances breast cancer cell sensitivity to cisplatin by regulating E2F1 and the cellular DNA damage response

Oncotarget ◽  
2015 ◽  
Vol 7 (1) ◽  
pp. 786-797 ◽  
Author(s):  
Alessandra Cataldo ◽  
Douglas G. Cheung ◽  
Andrea Balsari ◽  
Elda Tagliabue ◽  
Vincenzo Coppola ◽  
...  
2020 ◽  
Author(s):  
Laura Cheradame ◽  
Ida Chiara Guerrera ◽  
Julie Gaston ◽  
Alain Schmitt ◽  
Vincent Jung ◽  
...  

AbstractSTING (Stimulator of Interferon Genes) is a well-known endoplasmic reticulum-anchored adaptor of the innate immunity that triggers the expression of inflammatory cytokines in response to pathogen infection. In cancer cells, this pro-inflammatory pathway can be activated by genomic DNA damage potentiating antitumor immune responses. Here we report that STING promotes cancer cell survival and resistance to genotoxic treatment in a cell-autonomous manner. Mechanistically, we show that STING partly localizes at the inner nuclear membrane in various breast cancer cell lines and clinical tumor samples, and interacts with several proteins of the DNA damage response (DDR). STING overexpression enhances the amount of chromatin-bound DNA-dependent Protein Kinase (DNA-PK) complex, while STING silencing impairs DDR foci formation and DNA repair efficacy. Importantly, this function of STING is independent of its canonical pro-inflammatory pathway. This study highlights a previously unappreciated cell-autonomous tumor-promoting mechanism of STING that opposes its well-documented role in tumor immunosurveillance.Graphical abstract


2021 ◽  
Vol 22 (4) ◽  
pp. 2088
Author(s):  
Rosalin Mishra ◽  
Long Yuan ◽  
Hima Patel ◽  
Aniruddha S. Karve ◽  
Haizhou Zhu ◽  
...  

RIDR-PI-103 is a novel reactive oxygen species (ROS)-induced drug release prodrug with a self-cyclizing moiety linked to a pan-PI3K inhibitor (PI-103). Under high ROS, PI-103 is released in a controlled manner to inhibit PI3K. The efficacy and bioavailability of RIDR-PI-103 in breast cancer remains unexplored. Cell viability of RIDR-PI-103 was assessed on breast cancer cells (MDA-MB-231, MDA-MB-361 and MDA-MB-453), non-tumorigenic MCF10A and fibroblasts. Matrigel colony formation, cell proliferation and migration assays examined the migratory properties of breast cancers upon treatment with RIDR-PI-103 and doxorubicin. Western blots determined the effect of doxorubicin ± RIDR-PI-103 on AKT activation and DNA damage response. Pharmacokinetic (PK) studies using C57BL/6J mice determined systemic exposure (plasma concentrations and overall area under the curve) and T1/2 of RIDR-PI-103. MDA-MB-453, MDA-MB-231 and MDA-MB-361 cells were sensitive to RIDR-PI-103 vs. MCF10A and normal fibroblast. Combination of doxorubicin and RIDR-PI-103 suppressed cancer cell growth and proliferation. Doxorubicin with RIDR-PI-103 inhibited p-AktS473, upregulated p-CHK1/2 and p-P53. PK studies showed that ~200 ng/mL (0.43 µM) RIDR-PI-103 is achievable in mice plasma with an initial dose of 20 mg/kg and a 10 h T1/2. (4) The prodrug RIDR-PI-103 could be a potential therapeutic for treatment of breast cancer patients.


2021 ◽  
Author(s):  
Kerry Silva McPherson ◽  
Dmitry Korzhnev

Cellular DNA damage response (DDR) is an extensive signaling network that orchestrates DNA damage recognition, repair and avoidance, cell cycle progression and cell death. DDR alternation is a hallmark of...


2005 ◽  
Vol 79 (13) ◽  
pp. 8243-8248 ◽  
Author(s):  
Sara Klucking ◽  
Asha S. Collins ◽  
John A. T. Young

ABSTRACT The cytopathic effect (CPE) seen with some subgroups of avian sarcoma and leukosis virus (ASLV) is associated with viral Env activation of the death-promoting activity of TVB (a tumor necrosis factor receptor-related receptor that is most closely related to mammalian TNF-related apoptosis-inducing ligand [TRAIL] receptors) and with viral superinfection leading to unintegrated viral DNA (UVD) accumulation, which is presumed to activate a cellular DNA damage response. In this study, we employed cells that express signaling-deficient ASLV receptors to demonstrate that an ASLV CPE can be uncoupled from the death-promoting functions of the TVB receptor. However, these cell-killing events were associated with much higher levels of viral superinfection and DNA accumulation than those seen when the virus used signaling-competent TVB receptors. These findings suggest that a putative cellular DNA damage response that is activated by UVD accumulation might act in concert with the death-signaling pathways activated by Env-TVB interactions to trigger cell death. Such a model is consistent with the well-established synergy that exists between TRAIL-signaling pathways and DNA damage responses which is currently being exploited in cancer therapy regimens.


Oncotarget ◽  
2015 ◽  
Vol 6 (33) ◽  
pp. 34979-34991 ◽  
Author(s):  
Yuezhen Xue ◽  
Shen Yon Toh ◽  
Pingping He ◽  
Thimothy Lim ◽  
Diana Lim ◽  
...  

2018 ◽  
Vol 38 (11) ◽  
pp. 6217-6223
Author(s):  
HAIHONG SHI ◽  
JIN LIU ◽  
YIFAN TU ◽  
CARL E. FRETER ◽  
CHUNFA HUANG

Sign in / Sign up

Export Citation Format

Share Document