Wyznaczenie liczby Damköhlera i jej znaczenie w projektowaniu zabiegów matrycowego kwasowania

2021 ◽  
Author(s):  
Marek Czupski

During the matrix acidizing of carbonate formations, channels with high permeability are created, known as wormholes. The effectiveness of this type of treatment depends primarily on the structure, geometry, and the depth of penetration of the wormholes beyond the damaged zone. This should be ensured by a properly developed acidizing fluid, which in the case of carbonate formations most often consists of solutions of hydrochloric acid and/or organic acids such as acetic or formic acid. Additionally, in the case of high-temperature formations, additives are used to reduce the reaction rate of acid with the reservoir rock. The Damköhler number (Da) is an important factor that influences the model of the wormholes created. It represents the ratio of the rate of the reaction between the acid and the rock to the rate of its convection along the wormhole. The aim of the study was to determine the Damköhler number for four selected acidizing liquid–rock systems and to confirm that the structure of the wormholes depends on this variable. As part of the work, rheological tests of gelled acidizing liquids using a viscoelastic surfactant were conducted. The reaction rate tests were carried out on core plugs cut from Pińczów limestone and Guelph dolomite, which are characterized by relatively low permeability and porosity coefficients: 9.11–14.23 × 10−15m2 and 28.51%–29.10%, respectively, in the case of Pińczów limestone and 3.69–7.48 × 10−15m2 and 7.67%–9.38%, respectively, for Guelph dolomite. A rotating disk apparatus was used to determine the kinetics of the reaction of these rocks with two types of acidizing liquids. Then, core flow tests were performed on the core plugs using the AFS-300 system for the same types of rocks and liquids. The core plugs of Pińczów limestone used in these tests had a permeability coefficient ranging from 9.65 to 26.27 × 10−15m2 and a porosity coefficient ranging from 28.78% to 31.29%. On the other hand, samples of the Guelph dolomite had permeability coefficients of 7.48 to 61.52 × 10−15m2, while the porosity was much lower, ranging from 7.63% to 10.60%. After the core flow tests, the Damköhler number was calculated for each identified wormhole, using X-ray computed microtomography combined with an analysis of the geometric parameters. The types of structures that are formed in carbonate rocks as a result of matrix acidizing and their impact on the effectiveness of treatment are described in the theoretical part of this publication. Seven models of carbonate acidizing, which are used to estimate the influence of the parameters of the treatment and the properties of the liquid and rock on the efficiency of the acidizing process, are also discussed. Particular attention was paid to the theory of the Damköhler number, the value of which determines the formation of wormholes. The tests showed that at 80°C the overall reaction rate for each of the four acidizing liquid–rock systems was controlled by the mass transport rate. It was found that a gelled 15% HCl solution using TN-16235 viscoelastic surfactant reduced the overall reaction rate by reducing the mass transport rate. In the case of Pińczów limestone, the addition of 7.5% TN‑16235 surfactant reduced the De value from 4.45 × 10−6cm2/s to 3.53 × 10−6cm2/s; for Guelph dolomite De decreased from 2.25 × 10−6cm2/s to 1.97 × 10−6cm2/s. The values of the acidizing liquid pore volumes required to break through the core plug (PVbt) were determined based on the core flow tests. The lowest values of this parameter for Pińczów limestone were 0.26 for a 15% HCl solution and a velocity of 2.93 cm/min and 0.28 for a gelled 15% HCl solution and a velocity of 0.30 cm/min. For the Guelph dolomite rock, they were 0.88 for a 15% HCl solution and a velocity of 3.68 cm/min and 0.25 for a gelled 15% HCl solution and a velocity of 1.00 cm/min. Gelling a liquid with TN-16235 viscoelastic surfactant thus enables efficient matrix acidizing of carbonate formations with lower pumping rates. It was also found that the model of dissolution of the porous medium by a given acidizing liquid depended on the value of the Damköhler number. For wormholes created in the plugs of Pińczów limestone using the 15% HCl solution, the calculated values of Da were in the range of 0.244 to 0.026 (optimal value: 0.031); for the gelled 15% HCl solution it ranged from 0.145 to 0.008 (optimal value: 0.097). The optimal value for Da was considered to be the value for which wormholes were able to penetrate the entire length of the core with minimal acid spending described by PVbt. For wormholes etched in the Guelph dolomite rock by the 15% HCl solution, the calculated values of Da ranged from 0.104 to 0.030 (optimal value: 0.066), and for the gelled 15% HCl solution they ranged from 0.188 to 0.030 (optimal value: 0.069). The research methodology presented in this paper allows the Damköhler number to be determined for acidizing liquid–rock systems, and thus facilitates the preparation of technology for matrix acidizing of carbonate formations in such a way as to make these treatments as effective as possible. Keywords: matrix acidizing, Damköhler number, viscoelastic surfactant

2014 ◽  
Vol 11 (1) ◽  
pp. 89-91
Author(s):  
T. Z. Du ◽  
C.-H. Liu ◽  
Y. B. Zhao

Abstract. In this study, the dispersion of chemically reactive pollutants is calculated by large-eddy simulation (LES) in a neutrally stratified urban canopy layer (UCL) over urban areas. As a pilot attempt, idealized street canyons of unity building-height-to-street-width (aspect) ratio are used. Nitric oxide (NO) is emitted from the ground surface of the first street canyon into the domain doped with ozone (O3). In the absence of ultraviolet radiation, this irreversible chemistry produces nitrogen dioxide (NO2), developing a reactive plume over the rough urban surface. A range of timescales of turbulence and chemistry are utilized to examine the mechanism of turbulent mixing and chemical reactions in the UCL. The Damköhler number (Da) and the reaction rate (r) are analyzed along the vertical direction on the plane normal to the prevailing flow at 10 m after the source. The maximum reaction rate peaks at an elevation where Damköhler number Da is equal or close to unity. Hence, comparable timescales of turbulence and reaction could enhance the chemical reactions in the plume.


SPE Journal ◽  
2011 ◽  
Vol 16 (04) ◽  
pp. 968-980 ◽  
Author(s):  
M.A.. A. Mahmoud ◽  
H.A.. A. Nasr-El-Din ◽  
C.A.. A. De Wolf ◽  
J.N.. N. LePage

Summary Different chelating agents were used as alternatives for hydrochloric acid (HCl) in matrix acidizing to create wormholes in carbonate formations. Previous studies demonstrated the use of ethylenediaminetetraacetic acid (EDTA), hydroxy ethylenediaminetriacetic (HEDTA), and glutamic acid-N,N-diacetic acid (GLDA) as standalone stimulation fluids to stimulate carbonate reservoirs. The main problem of using EDTA and HEDTA is their low bio-degradability. GLDA was introduced as a standalone stimulation fluid for deep carbonate reservoirs where HCl can cause corrosion and face dissolution problems. In this study, calcite cores 1.5 in. in diameter and 6 or 20 in. in length were used to determine the optimum conditions where the GLDA can break through the core and form wormholes. GLDA solutions with pH values of 1.7, 3, and 3.8 were used. The optimum conditions of injection rate and pH were determined using coreflood experiments. Damköhler number was determined using the wormhole length and diameter from the CT scan 3D and 2D images. GLDA was compared with chelates that are used in the oil industry such as EDTA and HEDTA. GLDA also was used to stimulate parallel cores with different permeability ratios (up to 6.25). GLDA was found to be very effective in creating wormholes at pH = 1.7, 3, and 3.8; at different injection rates; and at temperatures up to 300°F. Increasing the temperature increased the reaction rate and less volume of GLDA was required to break through the core and form wormholes. Unlike HCl, in GLDA there was no face dissolution or washout in the cores even at low injection rates (0.5 cm3/min). An optimum injection rate and Damköhler number were found at which the pore volume (PV) required to create wormholes was the minimum. GLDA at pH 1.7 and 3 created wormholes with a small number of PV (at 1 cm3/min, GLDA at pH 1.7 required 1.5 PV at 300°F, and at pH 3 it required 1.8 PV). Compared with acetic acid, the volume of GLDA at pH 3 required to create wormholes was less than that required with acetic acid at the same conditions. GLDA was found to be effective in stimulating parallel cores up to 6.25 permeability contrast (final permeability/initial permeability).


Author(s):  
Guglielmo Costa ◽  
Alessandro Bressan ◽  
Michela Mapelli ◽  
Paola Marigo ◽  
Giuliano Iorio ◽  
...  

Abstract Pair-instability (PI) is expected to open a gap in the mass spectrum of black holes (BHs) between ≈40 − 65 M⊙ and ≈120 M⊙. The existence of the mass gap is currently being challenged by the detection of GW190521, with a primary component mass of $85^{+21}_{-14}$ M⊙. Here, we investigate the main uncertainties on the PI mass gap: the 12C(α, γ)16O reaction rate and the H-rich envelope collapse. With the standard 12C(α, γ)16O rate, the lower edge of the mass gap can be 70 M⊙ if we allow for the collapse of the residual H-rich envelope at metallicity Z ≤ 0.0003. Adopting the uncertainties given by the starlib database, for models computed with the 12C(α, γ)16O rate −1 σ, we find that the PI mass gap ranges between ≈80 M⊙ and ≈150 M⊙. Stars with MZAMS > 110 M⊙ may experience a deep dredge-up episode during the core helium-burning phase, that extracts matter from the core enriching the envelope. As a consequence of the He-core mass reduction, a star with MZAMS = 160 M⊙ may avoid the PI and produce a BH of 150 M⊙. In the −2 σ case, the PI mass gap ranges from 92 M⊙ to 110 M⊙. Finally, in models computed with 12C(α, γ)16O −3 σ, the mass gap is completely removed by the dredge-up effect. The onset of this dredge-up is particularly sensitive to the assumed model for convection and mixing. The combined effect of H-rich envelope collapse and low 12C(α, γ)16O rate can lead to the formation of BHs with masses consistent with the primary component of GW190521.


2018 ◽  
Vol 18 (1) ◽  
pp. 3-48
Author(s):  
LMBC Campos ◽  
C Legendre

In this study, the propagation of waves in a two-dimensional parallel-sided nozzle is considered allowing for the combination of: (a) distinct impedances of the upper and lower walls; (b) upper and lower boundary layers with different thicknesses with linear shear velocity profiles matched to a uniform core flow; and (c) a uniform cross-flow as a bias flow out of one and into the other porous acoustic liner. The model involves an “acoustic triple deck” consisting of third-order non-sinusoidal non-plane acoustic-shear waves in the upper and lower boundary layers coupled to convected plane sinusoidal acoustic waves in the uniform core flow. The acoustic modes are determined from a dispersion relation corresponding to the vanishing of an 8 × 8 matrix determinant, and the waveforms are combinations of two acoustic and two sets of three acoustic-shear waves. The eigenvalues are calculated and the waveforms are plotted for a wide range of values of the four parameters of the problem, namely: (i/ii) the core and bias flow Mach numbers; (iii) the impedances at the two walls; and (iv) the thicknesses of the two boundary layers relative to each other and the core flow. It is shown that all three main physical phenomena considered in this model can have a significant effect on the wave field: (c) a bias or cross-flow even with small Mach number [Formula: see text] relative to the mean flow Mach number [Formula: see text] can modify the waveforms; (b) the possibly dissimilar impedances of the lined walls can absorb (or amplify) waves more or less depending on the reactance and inductance; (a) the exchange of the wave energy with the shear flow is also important, since for the same stream velocity, a thin boundary layer has higher vorticity, and lower vorticity corresponds to a thicker boundary layer. The combination of all these three effects (a–c) leads to a large set of different waveforms in the duct that are plotted for a wide range of the parameters (i–iv) of the problem.


2018 ◽  
Vol 141 (1) ◽  
Author(s):  
Andreas Vogel ◽  
Adam J. Durant ◽  
Massimo Cassiani ◽  
Rory J. Clarkson ◽  
Michal Slaby ◽  
...  

Volcanic ash (VA) clouds in flight corridors present a significant threat to aircraft operations as VA particles can cause damage to gas turbine engine components that lead to a reduction of engine performance and compromise flight safety. In the last decade, research has mainly focused on processes such as erosion of compressor blades and static components caused by impinging ash particles as well as clogging and/or corrosion effects of soft or molten ash particles on hot section turbine airfoils and components. However, there is a lack of information on how the fan separates ingested VA particles from the core stream flow into the bypass flow and therefore influences the mass concentration inside the engine core section, which is most vulnerable and critical for safety. In this numerical simulation study, we investigated the VA particle–fan interactions and resulting reductions in particle mass concentrations entering the engine core section as a function of particle size, fan rotation rate, and for two different flight altitudes. For this, we used a high-bypass gas-turbine engine design, with representative intake, fan, spinner, and splitter geometries for numerical computational fluid dynamics (CFD) simulations including a Lagrangian particle-tracking algorithm. Our results reveal that particle–fan interactions redirect particles from the core stream flow into the bypass stream tube, which leads to a significant particle mass concentration reduction inside the engine core section. The results also show that the particle–fan interactions increase with increasing fan rotation rates and VA particle size. Depending on ingested VA size distributions, the particle mass inside the engine core flow can be up to 30% reduced compared to the incoming particle mass flow. The presented results enable future calculations of effective core flow exposure or dosages based on simulated or observed atmospheric VA particle size distribution, which is required to quantify engine failure mechanisms after exposure to VA. As an example, we applied our methodology to a recent aircraft encounter during the Mt. Kelud 2014 eruption. Based on ambient VA concentrations simulated with an atmospheric particle dispersion model (FLEXPART), we calculated the effective particle mass concentration inside the core stream flow along the actual flight track and compared it with the whole engine exposure.


Author(s):  
Ersin Sayar

Heat transfer in an oscillating water column in the transition regime of pool boiling to bubbly flow is investigated experimentally and theoretically. Forced oscillations are applied to water via a frequency controlled dc motor and a piston-cylinder device. Heat transfer is from the electrically heated inner surface to the reciprocating flow. The heat transfer in the oscillating fluid column is altered by using stainless steel scrap metal layers (made off open-cell discrete cells) which produces a porous medium within the system. The effective heat transfer mechanism is enhanced and it is due to the hydrodynamic mixing of the boundary layer and the core flow. In oscillating flow, the hydrodynamic lag between the core flow and the boundary layer flow is somehow significant. At low actuation frequencies and at low heat fluxes, heat transfer is restricted in the single phase flows. The transition regime of pool boiling to bubbly flow is proposed to be a remedy to the stated limitation. The contribution by the pool boiling on heat transfer appears to be the dominant mechanism for the selected low oscillation amplitudes and frequencies. Accordingly the regime is a transition from pool boiling to bubbly flow. Nucleate-bubbly flow boiling in oscillating flow is also investigated using a simplified thermodynamic analysis. According to the experimental results, bubbles induce highly efficient heat transfer mechanisms. Experimental study proved that the heater surface temperature is the dominant parameter affecting heat transfer. At greater actuation frequencies saturated nucleate pool boiling ceases to exist. Actuation frequency becomes important in that circumstances. The present investigation has possible applications in moderate sized wicked heat pipes, boilers, compact heat exchangers and steam generators.


Sign in / Sign up

Export Citation Format

Share Document