Improved general slice method of limit equilibrium for slope stability analysis

2021 ◽  
Vol 18 (1) ◽  
pp. 55-64
Author(s):  
Shiguo Xiao ◽  
Tingjun Chen

For traditional slice methods of limit equilibrium used to analyze slope stability, some hypothetical conditions on interslice force are generally introduced to solve the problem. In order to reduce the defect theoretically due to the related hypothesis, more rigorous constraints of interslice force are completely considered in light of static equilibrium conditions and energy dissipation principle of the interface between two adjacent slices. Without hypothesis of interslice force, the slope stability analysis is transformed consistently into a non-linear programming problem to be solved. So, a generally improved solution of slice method of limit equilibrium to slope stability is put forward. In particular, influence of the dilation angle of soil on slope stability can be involved in the method. The proposed method can be utilized for any slopes with arbitrary slip surfaces.

Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 700
Author(s):  
Qi Ge ◽  
Jingjing Zhang ◽  
Zhongxuan Chen ◽  
Jin Li

Hydrodynamic pressure is often a crucial factor in the evaluation of slope stability analysis, especially for many rainfall-triggered landslides. Nevertheless, hydrodynamic pressure is rarely considered in the traditional limit equilibrium slice method of slope stability analysis since effective and reliable hydrodynamic pressure data are often lacking in practice. Moreover, efficient methods to involve these data in slope stability analysis are an urgent need. To overcome these concerns, the flow velocity and direction system (FVDS) is employed to measure the groundwater flow velocity, which can be used to generate hydrodynamic pressure samples at different monitoring points. Based on these samples, the hydrodynamic pressure of each soil strip is estimated using artificial neural networks (ANNs). Afterward, an improved Bishop method that considers hydrodynamic pressure is proposed. The effectiveness and significance of the proposed method are illustrated with a case study, the Fanshantou landslide in Zhejiang Province, China. The safety factor before and after taking drainage countermeasures is also calculated and compared. The results indicate that hydrodynamic pressure plays an important role in the stability analysis of the Fanshantou landslide. Compared with the classical Bishop method, the improved method is shown to agree better with the actual deformation characteristics of the landslide.


2013 ◽  
Vol 275-277 ◽  
pp. 1423-1426
Author(s):  
Lin Kuang ◽  
Ai Zhong Lv ◽  
Yu Zhou

Based on finite element analysis software ANSYS, slope stability analysis is carried out by Elastic limiting equilibrium method proposed in this paper. A series of sliding surface of the slope can be assumed firstly, and then stress field along the sliding surface is analyzed as the slope is in elastic state. The normal and tangential stresses along each sliding surface can be obtained, respectively. Then the safety factor for each slip surface can be calculated, the slip surface which the safety factor is smallest is the most dangerous sliding surface. This method is different from the previous limit equilibrium method. For the previous limit equilibrium method, the normal and tangential stresses along the sliding surface are calculated based on many assumptions. While, the limit equilibrium method proposed in this paper has fewer assumptions and clear physical meaning.


Land ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1250
Author(s):  
Sina Shaffiee Haghshenas ◽  
Sami Shaffiee Haghshenas ◽  
Zong Woo Geem ◽  
Tae-Hyung Kim ◽  
Reza Mikaeil ◽  
...  

Slope stability analysis is undoubtedly one of the most complex problems in geotechnical engineering and its study plays a paramount role in mitigating the risk associated with the occurrence of a landslide. This problem is commonly tackled by using limit equilibrium methods or advanced numerical techniques to assess the slope safety factor or, sometimes, even the displacement field of the slope. In this study, as an alternative approach, an attempt to assess the stability condition of homogeneous slopes was made using a machine learning (ML) technique. Specifically, a meta-heuristic algorithm (Harmony Search (HS) algorithm) and K-means algorithm were employed to perform a clustering analysis by considering two different classes, depending on whether a slope was unstable or stable. To achieve the purpose of this study, a database made up of 19 case studies with 6 model inputs including unit weight, intercept cohesion, angle of shearing resistance, slope angle, slope height and pore pressure ratio and one output (i.e., the slope safety factor) was established. Referring to this database, 17 out of 19 slopes were categorized correctly. Moreover, the obtained results showed that, referring to the considered database, the intercept cohesion was the most significant parameter in defining the class of each slope, whereas the unit weight had the smallest influence. Finally, the obtained results showed that the Harmony Search algorithm is an efficient approach for training K-means algorithms.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Hua-Fu Pei ◽  
Chao Li ◽  
Hong-Hu Zhu ◽  
Yu-Jie Wang

In the past few decades, slope stability analysis using numerical methods is becoming a hot issue, but it is based on extremely ideal assumptions. Soil nailing technique, as one of the most cost-effective reinforcing methods, has already been widely used for reinforcing slopes. In this study, to evaluate the safety factor of a slope, the strains on soil nails were measured by fiber Bragg grating (FBG) sensor. Strains along soil nails in the same cross section of a slope can be computed using the measured wavelength shifts of FBG sensors. In order to evaluate the stability of a slope, an optimal model was proposed to search the potential slip surfaces based on measured strain values. Maximum sum of strains on soil nails at different elevations of the same cross section was taken as the objective. Positions of soil nails, circular slip surface, and boundary conditions of the soil nails were summarized and taken as constraints. Finally, safety factors can be computed using the searched slip surface regarding the axial stress of soil nails. This method combines the limit equilibrium methods with measured axial strains on site which can reflect the actual condition of field slopes.


1989 ◽  
Vol 26 (4) ◽  
pp. 679-686 ◽  
Author(s):  
Oldrich Hungr ◽  
F. M. Salgado ◽  
P. M. Byrne

A study comparing a three-dimensional extension of the Bishop simplified method with other limit equilibrium solutions is presented. Very good correspondence is found in cases of rotational and symmetric sliding surfaces, such as ellipsoids. The Bishop method tends to be conservative when applied to nonrotational and asymmetric surfaces because it neglects internal strength. The error is, however, tolerably small for many commonly occurring slide geometries. Indices are proposed to identify cases for which the method should not be used. With its limitations defined, the Bishop simplified method offers a useful algorithm for three-dimensional limit equilibrium analysis. Key words: three-dimensional slope stability analysis.


2013 ◽  
Vol 671-674 ◽  
pp. 311-314
Author(s):  
Jing Ma ◽  
Wen Sheng Chen ◽  
Zhen Li

Many methods have been used for slope stability analysis in recent years. Limit equilibrium method is more popular than others, but its model is very simple. This paper gives a more reasonable model and develops a program by VC++ . A reasonable result is obtained with the proposed model.


Sign in / Sign up

Export Citation Format

Share Document