The Main Trends in Developing Highly Reliable Communication and Control Systems for Unmanned Aerial Vehicles

Author(s):  
I.N. Panteleymonov ◽  
A.V. Belozertsev ◽  
А.А. Monastyrenko

This work examines the problem of developing a highly reliable and universal communication and control system for unmanned aerial vehicles that provides uninterrupted operation regardless of the vehicles’ location and destination. For this purpose, it is proposed to create three digital data transmission networks: ground, air and satellite using a stack of TCP/IP protocols and modern methods of management, processing and display of information (SCADA-system). To improve reliability, survivability, stealth and noise immunity of the communication and control system of unmanned aerial vehicles it is proposed to transmit information in the optical and radio bands.

Author(s):  
Hongbo Xin ◽  
Yujie Wang ◽  
Xianzhong Gao ◽  
Qingyang Chen ◽  
Bingjie Zhu ◽  
...  

The tail-sitter unmanned aerial vehicles have the advantages of multi-rotors and fixed-wing aircrafts, such as vertical takeoff and landing, long endurance and high-speed cruise. These make the tail-sitter unmanned aerial vehicle capable for special tasks in complex environments. In this article, we present the modeling and the control system design for a quadrotor tail-sitter unmanned aerial vehicle whose main structure consists of a traditional quadrotor with four wings fixed on the four rotor arms. The key point of the control system is the transition process between hover flight mode and level flight mode. However, the normal Euler angle representation cannot tackle both of the hover and level flight modes because of the singularity when pitch angle tends to [Formula: see text]. The dual-Euler method using two Euler-angle representations in two body-fixed coordinate frames is presented to couple with this problem, which gives continuous attitude representation throughout the whole flight envelope. The control system is divided into hover and level controllers to adapt to the two different flight modes. The nonlinear dynamic inverse method is employed to realize fuselage rotation and attitude stabilization. In guidance control, the vector field method is used in level flight guidance logic, and the quadrotor guidance method is used in hover flight mode. The framework of the whole system is established by MATLAB and Simulink, and the effectiveness of the guidance and control algorithms are verified by simulation. Finally, the flight test of the prototype shows the feasibility of the whole system.


1988 ◽  
Vol 110 (4) ◽  
pp. 367-373 ◽  
Author(s):  
Yoram Halevi ◽  
Asok Ray

Computer networking is a reliable and efficient means for communications between disparate and distributed components in complex dynamical processes like advanced aircraft, spacecraft, and autonomous manufacturing plants. The role of Integrated Communication and Control Systems (ICCS) is to coordinate and perform interrelated functions, ranging from real-time multi-loop control to information display and routine maintenance support. In ICCS, a feedback control loop is closed via the common communication channel which multiplexes digital data from the sensor to the controller and from the controller to the actuator along with the data traffic from other loops and management functions. Due to the asynchronous time-division multiplexing of the network protocol, time-varying and possibly stochastic delays are introduced in the control system, which degrade the system dynamic performance and are a source of potential instability. The paper is divided into two parts. In the first part, the delayed control system is represented by a finite-dimensional, time-varying, discrete-time model which is less complex than the existing continuous-time models for time-varying delays; this approach allows for simpler schemes for analysis and simulation of ICCS. The second part of the paper addresses ICCS design considerations and presents simulation results for certain operational scenarios of ICCS.


2010 ◽  
Vol 439-440 ◽  
pp. 149-154
Author(s):  
Jin Jun Rao ◽  
Zhen Jiang ◽  
Zhen Bang Gong ◽  
Zhen Zhang

Subminiature fixed-wing Unmanned Aerial Vehicles (SUAVs) present enormous potential. In order to develop a robotic SUAV with significant levels of autonomy, a portable ground control and test station (GCTS) is studied and developed. The requirements of GCTS are analyzed and the overview of GCTS is given firstly. Then the main operation modes of digital data link module are detailed. As the core of the portable GCTS, a set of software tools, including embedded map and trajectory visualization, 3-dimention attitude viewer, avionics panel, plotting utility, mission and control configuring, flight data and mission video storage and playback, etc., are researched and developed. The flight experiments application validate that the portable GCTS satisfy most of the requirements, and mitigates the difficulties and cost of development of the robotic SUAV remarkably.


2006 ◽  
Vol 3 (5) ◽  
pp. 187-213 ◽  
Author(s):  
Henrik B. Christophersen ◽  
R. Wayne Pickell ◽  
James C. Neidhoefer ◽  
Adrian A. Koller ◽  
Suresh K. Kannan ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4540
Author(s):  
Leszek Ambroziak ◽  
Maciej Ciężkowski

The following paper presents a method for the use of a virtual electric dipole potential field to control a leader-follower formation of autonomous Unmanned Aerial Vehicles (UAVs). The proposed control algorithm uses a virtual electric dipole potential field to determine the desired heading for a UAV follower. This method’s greatest advantage is the ability to rapidly change the potential field function depending on the position of the independent leader. Another advantage is that it ensures formation flight safety regardless of the positions of the initial leader or follower. Moreover, it is also possible to generate additional potential fields which guarantee obstacle and vehicle collision avoidance. The considered control system can easily be adapted to vehicles with different dynamics without the need to retune heading control channel gains and parameters. The paper closely describes and presents in detail the synthesis of the control algorithm based on vector fields obtained using scalar virtual electric dipole potential fields. The proposed control system was tested and its operation was verified through simulations. Generated potential fields as well as leader-follower flight parameters have been presented and thoroughly discussed within the paper. The obtained research results validate the effectiveness of this formation flight control method as well as prove that the described algorithm improves flight formation organization and helps ensure collision-free conditions.


Sign in / Sign up

Export Citation Format

Share Document