A Theoretical Study of Light Soliton Produced by Semiconductor Quantum Dot Waveguides and Propagation in Optical Fibers

Author(s):  
O.P. Swami ◽  
V. Kumar ◽  
B. Suthar ◽  
A.K. Nagar

In this paper, the propagation of light soliton is studied in nonlinear optical fiber. We propose the external excitation of SQD waveguides through an optical source that allows the generation of solitary waves that are propagated through a non-linear optical fiber. The soliton formation is studied theoretically from the non-linear interaction between the external optical excitation and SQDs, considering SQDs as a quantum system of three energy levels. In this study, the Fourier Split-Step (FSS) method is used to solve numerically continuous nonlinear Schrodinger equation (NLSE) to evolution of the soliton pulse emitted by the SQDs inside an optical fiber with real physical parameters. The effect of SQDs density and electric field on the pulse width is also studied. Phase plane portraits are drawn for the stability of soliton in fiber and SQDs using software Matcont.

2019 ◽  
Vol 127 (9) ◽  
pp. 477
Author(s):  
А.А. Маковецкий ◽  
А.А. Замятин ◽  
Д.В. Ряховский

Optical properties silica - polymeric optical fiber with a core with a diameter of 430 microns and the reflecting cover 70 microns thick from thermoplastic copolymer of a tetraftoretilen with ethylene (Tefzel brand) are experimentally investigated. The polymeric cover is applied on silica fiber with applicator from polimer melt directly on drowing tower. Optical losses of the fiber, a numerical aperture and its dependence on fiber length are measured. It is established that at propagation of light in fiber its noticeable scattering is observed. It is connected with crystallinity of polymeric cover. Distribution of intensity of scattered radiation along an axis of fiber and an indicatrix of dispersion of radiation by a coating are measured. Relative deposits of dispersion and absorption of light in a cover at the general optical losses of fiber are estimated. The possibility of use of optical fibers of this structure in laser medicine is considered.


1986 ◽  
Vol 88 ◽  
Author(s):  
L. L. Blyler ◽  
K. A. Cogan ◽  
J. A. Ferrara

ABSTRACTThe current stktus of worldwide research in the use of polymers as active lightwave transmission media is examined. Applications include plastic optical fibers, plastic optical components, polymeric optical fiber sensors and non-linear optical polymers.


2021 ◽  
Vol 18 (1) ◽  
pp. 28
Author(s):  
J. C. Natividad ◽  
H. H. Cerecedo Núñez ◽  
P. Padilla Sosa

Traditionally, optical fibers have been used as communication lines and optical sensors; however, these have multiple other uses, for example, the interaction and entrapment of microparticles. This article studies the computational modelling of the propagation of light that comes out of conventional, single-mode and multimode optical fibers, which is of interest when studying the interaction of light with microparticles. As a parameter of analysis and quantification we use the degree of diffraction of the light propagation beams, at different distances from the optical fibers. Resulted intensity field distributions give us important microscopic information to consider for light interaction with such microparticles.


2017 ◽  
Vol 31 (26) ◽  
pp. 1750178 ◽  
Author(s):  
Abdelâali Boudjemâa

We study the stability and the dynamics of many-soliton molecules in dispersion-managed (DM) optical fibers with focus on five-and seven-soliton molecules by analytical and numerical means. In particular we calculate the binding force, pulse durations and equilibrium separations using a variational approach. Predicted pulse shapes are in good agreement with those found by numerical simulations of the underlying nonlinear Schrödinger equation. Within limitations, soliton molecules with up to seven solitons possibly allow to encode three bits of data per clock period.


Micromachines ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 85
Author(s):  
Saifur Rahman ◽  
Farman Ali ◽  
Fazal Muhammad ◽  
Muhammad Irfan ◽  
Adam Glowacz ◽  
...  

Hundreds of kilometers of optical fibers are installed for optical meshes (OMs) to transmit data over long distances. The visualization of these deployed optical fibers is a highlighted issue because the conventional procedure can only measure the optical losses. Thus, this paper presents distributed vibration sensing (DVS) estimation mechanisms to visualize the optical fiber behavior installed for OMs which is not possible by conventional measurements. The proposed technique will detect the power of light inside the optical fiber, as well as different physical parameters such as the phase of transmitted light inside the thread, the frequency of vibration, and optical losses. The applicability of optical frequency domain reflectometry (OFDR) and optical time-domain reflectometry (OTDR) DVS techniques are validated theoretically for various state detection procedures in optical fibers. The simulation model is investigated in terms of elapsed time, the spectrum of a light signal, frequency, and the impact of many external physical accidents with optical fibers.


Entropy ◽  
2020 ◽  
Vol 22 (9) ◽  
pp. 1062
Author(s):  
Muhammad Irfan ◽  
Farman Ali ◽  
Fazal Muhammad ◽  
Usman Habib ◽  
Abdullah S. Alwadie ◽  
...  

High capacity long haul communication and cost-effective solutions for low loss transmission are the major advantages of optical fibers, which makes them a promising solution to be used for backhaul network transportation. A distortion-tolerant 100 Gbps framework that consists of long haul and high capacity transport based wavelength division multiplexed (WDM) system is investigated in this paper, with an analysis on different design parameters to mitigate the amplified spontaneous emission (ASE) noise and nonlinear effects due to the fiber transmission. The performance degradation in the presence of non-linear effects is evaluated and a digital signal processing (DSP) assisted receiver is proposed in order to achieve bit error rate (BER) of 1.56 × 10−6 and quality factor (Q-factor) of 5, using 25 and 50 GHz channel spacing with 90 μm2 effective area of the optical fiber. Analytical calculations of the proposed WDM system are presented and the simulation results verify the effectiveness of the proposed approach in order to mitigate non-linear effects for up to 300 km length of optical fiber transmission.


2012 ◽  
Vol E95.B (8) ◽  
pp. 2638-2641 ◽  
Author(s):  
Makoto YAMADA ◽  
Akisumi TOMOE ◽  
Takahiro KINOSHITA ◽  
Osanori KOYAMA ◽  
Yutaka KATUYAMA ◽  
...  
Keyword(s):  

2004 ◽  
Vol 61 (7-12) ◽  
pp. 1055-1071
Author(s):  
N. N. Gerasimova ◽  
V. G. Sinitsin ◽  
Yu. M. Yampolski

2003 ◽  
Vol 3 ◽  
pp. 297-307
Author(s):  
V.V. Denisov

An approach to the study of the stability of non-linear multiply connected systems of automatic control by means of a fast Fourier transform and the resonance phenomenon is considered.


Sign in / Sign up

Export Citation Format

Share Document