scholarly journals Many-soliton bound states in dispersion-managed optical fiber: Possibility of fiber-optic transmission of three bits per clock period

2017 ◽  
Vol 31 (26) ◽  
pp. 1750178 ◽  
Author(s):  
Abdelâali Boudjemâa

We study the stability and the dynamics of many-soliton molecules in dispersion-managed (DM) optical fibers with focus on five-and seven-soliton molecules by analytical and numerical means. In particular we calculate the binding force, pulse durations and equilibrium separations using a variational approach. Predicted pulse shapes are in good agreement with those found by numerical simulations of the underlying nonlinear Schrödinger equation. Within limitations, soliton molecules with up to seven solitons possibly allow to encode three bits of data per clock period.

Author(s):  
А.D. Меkhtiyev ◽  
◽  
E.G. Neshina ◽  
P.Sh. Madi ◽  
D.A. Gorokhov ◽  
...  

This article ls with the issues related to the development of a system for monitoring the deformation and displacement of the rock mass leading to the collapse of the quarry sides. Monitoring system uses point-to-point fiber-optic sensors. Fiber-optic sensors and control cables of the communication line are made based on the single mode optical fibers, which allows to measure with high accuracy the deformations and displacements of the rock mass at a distance of 30-50 km. To create fiber-optic pressure sensors, an optical fiber of the ITU-T G. 652.D standard is used. Laboratory sample is developed concerning the point fiber-optic sensor made based on the two-arm Mach-Zender interferometer using a single mode optical fiber for monitoring strain (displacements) with a change in the sensitivity and a reduced influence of temperature interference leading to zero drift. The article presents a mathematical apparatus for calculating the intensity of radiation of a light wave passing through an optical fiber with and without mechanical stress. A laboratory sample of single mode optical fibers based on the Mach-Zender interferometer showed a fairly high linearity and accuracy in the measurement and can be used to control the strain of the mass after appropriate refinement of its design. Mathematical expressions are also given for determining the intensity of the light wave when the distance between the fixing points of a single mode optical fiber changes depending on the change in the external temperature. A diagram for measuring strain using a point fiber-optic strain sensor is developed. Hardware and software package is developed, which can be used to perform a number of settings of measuring channels. The work is aimed at solving the production problems of the Kenzhem quarry of AK Altynalmas JSC.


1997 ◽  
Vol 3 (S2) ◽  
pp. 845-846
Author(s):  
S. Michael Angel ◽  
H. Trey Skinner ◽  
Brian J. Marquardt

Optical fiber probes are routinely used with optical spectrometers to allow measurements to be made on remotely located samples. In most of these systems, however, the optical fibers are used as non-imaging “light pipes” for the transmission of laser light, and luminescence or Raman signals to and from the sample. Thus, while these systems are suitable for remote spectroscopy, they are limited to single-point measurements. In a recent paper, we showed that a small-diameter (i.e., 350 μm) coherent optical fiber bundle can be combined with an AOTF-based imaging spectrometer for fluorescence and Raman spectral micro-imaging with increased flexibility in terms of sample positioning and in-situ capabilities. The previous paper described the operation of the fiber-optic microimaging probe and AOTF imaging system and showed preliminary Raman and fluorescence images for model compounds with 4 μm resolution. We have extended this work to include a discussion of the lateral and vertical spatial resolution of the fiber-optic microprobe in a non-contact proximity-focused configuration.


2018 ◽  
Vol 140 (9) ◽  
Author(s):  
Mohamed Zanaty ◽  
Simon Henein

Programmable multistable mechanisms (PMM) exhibit a modifiable stability behavior in which the number of stable states, stiffness, and reaction force characteristics are controlled via their programming inputs. In this paper, we present experimental characterization for the concept of stability programing introduced in our previous work (Zanaty et al., 2018, “Programmable Multistable Mechanisms: Synthesis and Modeling,” ASME J. Mech. Des., 140(4), p. 042301.) A prototype of the T-combined axially loaded double parallelogram mechanisms (DPM) with rectangular hinges is manufactured using electrodischarge machining (EDM). An analytical model based on Euler–Bernoulli equations of the T-mechanism is derived from which the stability behavior is extracted. Numerical simulations and experimental measurements are conducted on programming the mechanism as monostable, bistable, tristable, and quadrastable, and show good agreement with our analytical derivations within 10%.


1997 ◽  
Vol 503 ◽  
Author(s):  
F. Ansari

ABSTRACTIt is possible to monitor the initiation and progress of various mechanical or environmentally induced perturbations in concrete elements by way of fully integrated optical fiber sensors. Geometric adaptability and ease by which optical fibers can be embedded within concrete elements has led to the development of a number of innovative applications for concrete elements. This article is intended for a brief introduction into the theories, principles, and applications of fiber optic sensors as they pertain to applications in concrete.. However, due to the fact that the transduction mechanism in optical fibers is invariant of the materials employed, the principles introduced here also correspond to other structural materials. The only application related differences among various materials pertain to sensitivity and choice of optical fiber sensor types.


This article studies the parameters of fiber-optic communication lines (FOCL) in the temperature range. For research, a climatic unit has been developed that allows a wide temperature range for testing (from -90°C to + 90°C) and an experimental complex for investigating the stability of optical parameters of a fiber-optic cable with temperature changes in the range from + 18°C to + 76°C. A technology of sequential switching of optical fibers of a fiber-optic cable by means of welding is proposed, thanks to which the constructive problem of placing a long optical fiber in a limited volume of a heat chamber is solved. Measurement of changes in the attenuation of fiber-optic communication lines with a monotonic change in positive temperatures in the direction of increasing and decreasing temperature.


2020 ◽  
Vol 2 (2) ◽  
pp. 91-99
Author(s):  
Imam Mulyanto

The test has been successfully carried out on optical fibers to be used as a macrobending tilt sensor using SMF-28 single mode optical fiber. The optical fiber was molded with silicon rubber, then connected to a laser light and a power meter to see the intensity of the laser power produced. The principle is carried out using the macro bending phenomenon on single mode optical fibers, where the laser light intensity in the fiber optic cable will decrease if there is a bend or bending in the fiber optic cable. We can observe the power loss resulting from the macro bending process to find out how sensitive the optical fiber is to changes in a given angle. The resulting optical fiber sensitivity value is -0.1534o/dBm.


1998 ◽  
Vol 52 (4) ◽  
pp. 546-551 ◽  
Author(s):  
Anna Grazia Mignani ◽  
Riccardo Falciai ◽  
Leonardo Ciaccheri

This paper discusses the theoretical and experimental implications of tapering a multimode optical fiber with a view to its use in evanescent wave absorption spectroscopy. Good experimental results are obtained, showing the possibility of quadruplicating the absorbance efficiency. This easy and reproducible technique for taper fabrication is suitable for the implementation of both probes for spectroscopy and chemically assisted fiber-optic sensors.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Chan Hee Park ◽  
Arim Lee ◽  
Rinah Kim ◽  
Joo Hyun Moon

The aim of this study was to develop and evaluate fiber-optic sensors for the remote detection of gamma rays in areas that are difficult to access, such as a spent fuel pool. The fiber-optic sensor consists of a light-generating probe, such as scintillators for radiation detection, plastic optical fibers, and light-measuring devices, such as PMT. The (Lu,Y)2SiO5:Ce(LYSO:Ce) scintillator was chosen as the light-generating probe. The (Lu,Y)2SiO5:Ce(LYSO:Ce) scintillator has higher scintillation efficiency than the others and transmits light well through an optical fiber because its refraction index is similar to the refractive index of the optical fiber. The fiber-optic radiation sensor using the (Lu,Y)2SiO5:Ce(LYSO:Ce) scintillator was evaluated in terms of the detection efficiency and reproducibility for examining its applicability as a radiation sensor.


1987 ◽  
Vol 41 (5) ◽  
pp. 779-785 ◽  
Author(s):  
Brad Tenge ◽  
B. R. Buchanan ◽  
D. E. Honigs

Chemical sensing in remote, hostile environments is possible with optical fiber technology. Telecommunications optical fiber transmits light in the near-infrared region. The least amount of attenuation of transmitted power is between 1050 nm and 1600 nm. It is a natural step to apply near-infrared analysis techniques to data remotely collected over optical fibers. A feasibility study is conducted to see how well calibration techniques, Multiple Linear Regression with either Step-up search or All Possible Combinations search, perform in the fiber optic region of the near-infrared. Calibration in the 1131–1531 nm region is compared to calibration in the 1131–2531 nm region. The latter region is considered more information-rich than the former. In spite of this, examination of the predictive power of calibration models formed strictly from fiberoptic-region absorbance data indicates that this region contains useful analytical informaton.


2019 ◽  
Vol 11 (1) ◽  
pp. 13
Author(s):  
Joanna Ewa Moś ◽  
Karol Antoni Stasiewicz ◽  
Leszek Roman Jaroszewicz

The work describes the technology of a liquid crystal cell with a tapered optical fiber as an element providing light. The tapered optical fiber with the total optical loss of 0.22 ± 0.07 dB, the taper waist diameter of 15.5 ± 0.5 μm, and the elongation of 20.4 ± 0.3 mm has been used. The experimental results are presented for a liquid crystal cell filled with a mixture 1550* for parallel orientation of LC molecules to the cross section of the taper waist. Measurement results show the influence of the electrical field with voltage in the range of 0-200 V, without, as well as with different modulation for spectral characteristics. The sinusoidal and square signal shapes are used with a 1-10 Hz frequency range. Full Text: PDF ReferencesZ. Liu, H. Y. Tam, L. Htein, M. L.Vincent Tse, C. Lu, "Microstructured Optical Fiber Sensors", J. Lightwave Technol. 35, 16 (2017). CrossRef T. R. Wolinski, K. Szaniawska, S. Ertman1, P. Lesiak, A. W. Domański, R. Dabrowski, E. Nowinowski-Kruszelnicki, J. Wojcik "Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres", Meas. Sci. Technol. 17, 5 (2006). CrossRef K. Nielsen, D. Noordegraaf, T. Sørensen, A. Bjarklev,T. Hansen, "Selective filling of photonic crystal fibres", J. Opt. A: Pure Appl. Opt. 7, 8 (2005). CrossRef A. A. Rifat, G. A. Mahdiraji, D. M. Chow, Y, Gang Shee, R. Ahmed, F. Rafiq, M Adikan, "Photonic Crystal Fiber-Based Surface Plasmon Resonance Sensor with Selective Analyte Channels and Graphene-Silver Deposited Core", Sensors 15, 5 (2015) CrossRef Y. Huang, Z.Tian, L.P. Sun, D. Sun, J.Li, Y.Ran, B.-O. Guan "High-sensitivity DNA biosensor based on optical fiber taper interferometer coated with conjugated polymer tentacle", Opt. Express 23, 21 (2015). CrossRef X. Wang, O. S. Wolfbeis, "The 2016 Annual Review Issue", Anal. Chem., 88, 1 (2016). CrossRef Ye Tian, W. Wang, N. Wu, X. Zou, X.Wang, "Tapered Optical Fiber Sensor for Label-Free Detection of Biomolecules", Sensors 11, 4 (2011). CrossRef O. Katsunari, Fundamentals of Optical Waveguides, (London, Academic Press, (2006). DirectLink A. K. Sharma, J. Rajan, B.D. Gupta, "Fiber-Optic Sensors Based on Surface Plasmon Resonance: A Comprehensive Review", IEEE Sensors Journal 7, 8 (2007). CrossRef C. Caucheteur, T. Guo, J. Albert, "Review of plasmonic fiber optic biochemical sensors: improving the limit of detection", Anal. Bioanal.Chem. 407, 14 (2015). CrossRef S. F. Silva L. Coelho, O. Frazão, J. L. Santos, F. X.r Malcata, "A Review of Palladium-Based Fiber-Optic Sensors for Molecular Hydrogen Detection", IEEE SENSORS JOURNAL 12, 1 (2012). CrossRef H. Waechter, J. Litman, A. H. Cheung, J. A. Barnes, H.P. Loock, "Chemical Sensing Using Fiber Cavity Ring-Down Spectroscopy", Sensors 10, 3 (2010). CrossRef S. Zhu, F. Pang, S. Huang, F.Zou, Y.Dong, T.Wang, "High sensitivity refractive index sensor based on adiabatic tapered optical fiber deposited with nanofilm by ALD", Opt. Express 23, 11 (2015). CrossRef L. Zhang, J. Lou, L. Tong, "Micro/nanofiber optical sensors", Photonics sensor 1, 1 (2011). CrossRef L.Tong, J. Lou, E. Mazur, "Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides", Opt. Express 11, 6 (2004). CrossRef H. Moyyed, I. T. Leite, L. Coelho, J. L. Santos, D. Viegas, "Analysis of phase interrogated SPR fiber optic sensors with bimetallic layers", IEEE Sensors Journal 14, 10 (2014). CrossRef A. González-Cano, M. Cruz Navarette, Ó. Esteban, N. Diaz Herrera , "Plasmonic sensors based on doubly-deposited tapered optical fibers", Sensors 14, 3 (2014). CrossRef K. A. Stasiewicz, J.E. Moś, "Threshold temperature optical fibre sensors", Opt. Fiber Technol. 32, (2016). CrossRef L. Zhang, F. Gu, J. Lou, X. Yin, L. Tong, "Fast detection of humidity with a subwavelength-diameter fiber taper coated with gelatin film", Opt. Express 16, 17 (2008). CrossRef S.Zhu, F.Pang, S. Huang, F. Zou, Q. Guo, J. Wen, T. Wang, "High Sensitivity Refractometer Based on TiO2-Coated Adiabatic Tapered Optical Fiber via ALD Technology", Sensors 16, 8 (2016). CrossRef G.Brambilla, "Optical fibre nanowires and microwires: a review", J. Optics 12, 4 (2010) CrossRef M. Ahmad, L.L. Hench, "Effect of taper geometries and launch angle on evanescent wave penetration depth in optical fibers", Biosens. Bioelectron. 20, 7 (2005). CrossRef L.M. Blinov, Electrooptic Effects in Liquid Crystal Materials (New York, Springftianer, 1994). CrossRef L. Scolari, T.T. Alkeskjold, A. Bjarklev, "Tunable Gaussian filter based on tapered liquid crystal photonic bandgap fibre", Electron. Lett. 42, 22 (2006). CrossRef J. Moś, M. Florek, K. Garbat, K.A. Stasiewicz, N. Bennis, L.R. Jaroszewicz, "In-Line Tunable Nematic Liquid Crystal Fiber Optic Device", J. of Lightwave Technol. 36, 4 (2017). CrossRef J. Moś, K A Stasiewicz, K Garbat, P Morawiak, W Piecek, L R Jaroszewicz, "Tapered fiber liquid crystal hybrid broad band device", Phys. Scripta. 93, 12 (2018). CrossRef Ch. Veilleux, J. Lapierre, J. Bures, "Liquid-crystal-clad tapered fibers", Opt. Lett. 11, 11 (1986). CrossRef R. Dąbrowski, K. Garbat, S. Urban, T.R. Woliński, J. Dziaduszek, T. Ogrodnik, A,Siarkowska, "Low-birefringence liquid crystal mixtures for photonic liquid crystal fibres application", Liq. Cryst. 44, (2017). CrossRef S. Lacroix, R. J. Black, Ch. Veilleux, J. Lapierre, "Tapered single-mode fibers: external refractive-index dependence", Appl. Opt., 25, 15 (1986). CrossRef J.F. Henninot, D. Louvergneaux , N.Tabiryan, M. Warenghem, "Controlled Leakage of a Tapered Optical Fiber with Liquid Crystal Cladding", Mol. Cryst.and Liq.Cryst., 282, 1(1996). CrossRef


Sign in / Sign up

Export Citation Format

Share Document