scholarly journals Calculation of eigen frequency splitting of a cylindrical resonator of a solid-state wave gyroscope based on numerical integration of high accuracy

Author(s):  
O.S. Narajkin ◽  
F.D. Sorokin ◽  
A.M. Guskov ◽  
S.A. Kozubnyak ◽  
D.S. Vahlyarskiy

Solid-state wave gyroscopes are widely used in various fields of technology. The principle of their operation is based on the phenomenon of precession of the elastic wave, which rotates at an angular velocity proportional to the angular velocity of device body rotation. The accuracy of the device is significantly affected by splitting the gyroscope resonator frequency. The article considers splitting caused by the distortion of the cylindrical resonator cross-section shape. Since the splitting is very small, the perturbation method is usually used to determine it. The article proposes a new method for calculating the splitting based on the numerical high accuracy integration of equations of dynamics of a cylindrical shell with a non-circular cross section. To search for two very close frequencies, through the difference of which the splitting was found, a linear boundary eigenvalue problem was solved with retention of a large number of decimal places. Examples of determining the natural frequency splitting are presented for various laws of the distribution of the radial deviation of the cavity cross-section shape along the circumferential coordinate. Verification of the results was performed by the finite element method. When using the method each of the two close frequencies was calculated with high accuracy

Water ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2119
Author(s):  
Luís Mesquita David ◽  
Rita Fernandes de Carvalho

Designing for exceedance events consists in designing a continuous route for overland flow to deal with flows exceeding the sewer system’s capacity and to mitigate flooding risk. A review is carried out here on flood safety/hazard criteria, which generally establish thresholds for the water depth and flood velocity, or a relationship between them. The effects of the cross-section shape, roughness and slope of streets in meeting the criteria are evaluated based on equations, graphical results and one case study. An expedited method for the verification of safety criteria based solely on flow is presented, saving efforts in detailing models and increasing confidence in the results from simplified models. The method is valid for 0.1 m2/s 0.5 m2/s. The results showed that a street with a 1.8% slope, 75 m1/3s−1 and a rectangular cross-section complies with the threshold 0.3 m2/s for twice the flow of a street with the same width but with a conventional cross-section shape. The flow will be four times greater for a 15% street slope. The results also highlighted that the flood flows can vary significantly along the streets depending on the sewers’ roughness and the flow transfers between the major and minor systems, such that the effort detailing a street’s cross-section must be balanced with all of the other sources of uncertainty.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rachel M. Starkweather ◽  
Svetlana V. Poroseva ◽  
David T. Hanson

AbstractAn important role that the leading-edge cross-section shape plays in the wing flight performance is well known in aeronautics. However, little is known about the shape of the leading-edge cross section of an insect’s wing and its contribution to remarkable qualities of insect flight. In this paper, we reveal, in the first time, the shape of the leading-edge cross section of a cicada’s wing and analyze its variability along the wing. We also identify and quantify similarities in characteristic dimensions of this shape in the wings of three different cicada species.


2019 ◽  
Vol 13 (1) ◽  
pp. 195-199 ◽  
Author(s):  
Alexandre Hubert ◽  
Jean-Philippe Colonna ◽  
Stéphane Bécu ◽  
Cécilia Dupré ◽  
Virginie Maffini-Alvaro ◽  
...  

2021 ◽  
Author(s):  
Teng Man ◽  
Herbert Huppert ◽  
Ling Li ◽  
Sergio Galindo-Torres

<p>The collapse of granular columns, which sheds light on the kinematics, dynamics, and deposition morphology of mass-driven flows, is crucial for understanding complex flows in both natural and engineering systems, such as debris flows and landslides. However, our research shows that a strong size effect and cross-section shape influence exist in this test. Thus, it is essential to better understand these effects. In this study, we explore the influence of both relative column sizes and cross-section shapes on the run-out behavior of collapsed granular columns and analyze their influence on the deposition morphology with the discrete element method (DEM) with Voronoi-based spheropolyhedron particles. We link the size effect that occurs in granular column collapse problems to the finite-size scaling functions and investigate the characteristic correlation length associated with the granular column collapses. The collapsing behavior of granular columns with different cross-section shapes is also studied, and we find that particles tend to accumulate in the direction normal to the edge of the cross-section instead of the vertex of it. The differences in the run-out behavior in different directions when the cross-section is no longer a circle can also be explained by the finite-size analysis we have performed in this study. We believe that such a study is crucial for us to better understand how granular material flows, how it deposits, and how to consider the size effect in the rheology of granular flows.</p>


2013 ◽  
Vol 405-408 ◽  
pp. 1292-1296 ◽  
Author(s):  
Hong Tao Xie

Taking portal segment in some shallow-buried tunnel in seismic region with strong motion as objects of study, the finite element analysis method was used to compare and assess the seismic behavior of the tunnel with different cross section shape. The results show that the linings displacement response of the tunnel with different cross section shape differs very minor under seismic load. Meanwhile there exists obvious difference in the lining internal forces of the tunnel with different cross section shape. Among all the tunnel with different section shape, the mechanics situation of the tunnel with triple arched sections is the best. While the section of the tunnel is closer to circular in shape, the mechanics situation of the lining can be effectively improved under seismic load.


Sign in / Sign up

Export Citation Format

Share Document