scholarly journals Investigation of the formation of cardiac tissue on substrates of varying degrees of anisotropy and rigidity

2020 ◽  
Vol 49 ◽  
Author(s):  
S. A. Shcherbina ◽  
A. V. Shutko ◽  
A. A. Nizamieva ◽  
A. V. Nikitina ◽  
M. M. Slotvitsky ◽  
...  

In the last decade, in vitro experiments have shown that mechanical properties of the bases could markedly influence the efficacy of differentiation of the induced pluripotent and embryonic stem cells and their development into the mature phenotype. By changing of mechanical, elastic and structural characteristics of the base, it is possible to increase the percentage of stem cells that differentiate to cardiomyocytes.The study was aimed at evaluation of the effects induced by changing physical characteristics of the base on the formation of phenotypic characteristics of cardiac cells. This included the comparison of structural properties of the cultured layer of heart tissue obtained by changing of elasticity and structure of polymeric bases. The results showed significant differences in calcium activity and structural characteristics of cardiomyocytes depending on the base properties, as well as significant variation in the excitation conduction. As long as conduction abnormalities in the heart tissues can often lead to occurrence of life-threatening cardiac arrhythmias, the results can be used to determine patient groups at increased risk of death from heart failure.

Cells ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 29 ◽  
Author(s):  
Smaranda Dana Buduru ◽  
Diana Gulei ◽  
Alina-Andreea Zimta ◽  
Adrian Bogdan Tigu ◽  
Diana Cenariu ◽  
...  

Tissue engineering has gained much momentum since the implementation of stem cell isolation and manipulation for regenerative purposes. Despite significant technical improvements, researchers still have to decide which strategy (which type of stem cell) is the most suitable for their specific purpose. Therefore, this short review discusses the advantages and disadvantages of the three main categories of stem cells: embryonic stem cells, mesenchymal stem cells and induced pluripotent stem cells in the context of bone regeneration for dentistry-associated conditions. Importantly, when deciding upon the right strategy, the selection needs to be made in concordance with the morbidity and the life-threatening level of the condition in discussion. Therefore, even when a specific type of stem cell holds several advantages over others, their availability, invasiveness of the collection method and ethical standards become deciding parameters.


2013 ◽  
Vol 91 (12) ◽  
pp. 985-998 ◽  
Author(s):  
Sreejit Parameswaran ◽  
Sujeet Kumar ◽  
Rama Shanker Verma ◽  
Rajendra K. Sharma

The success of any work with isolated cardiomyocytes depends on the reproducibility of cell isolation, because the cells do not divide. To date, there is no suitable in vitro model to study human adult cardiac cell biology. Although embryonic stem cells and induced pluripotent stem cells are able to differentiate into cardiomyocytes in vitro, the efficiency of this process is low. Isolation and expansion of human cardiomyocyte progenitor cells from cardiac surgical waste or, alternatively, from fetal heart tissue is another option. However, to overcome various issues related to human tissue usage, especially ethical concerns, researchers use large- and small-animal models to study cardiac pathophysiology. A simple model to study the changes at the cellular level is cultures of cardiomyocytes. Although primary murine cardiomyocyte cultures have their own advantages and drawbacks, alternative strategies have been developed in the last two decades to minimise animal usage and interspecies differences. This review discusses the use of freshly isolated murine cardiomyocytes and cardiomyocyte alternatives for use in cardiac disease models and other related studies.


2013 ◽  
Vol 25 (1) ◽  
pp. 300
Author(s):  
T. R. Talluri ◽  
D. Hermann ◽  
B. Barg-Kues ◽  
K. Debowski ◽  
R. Behr ◽  
...  

The elusive nature of embryonic stem cells in livestock makes reprogramming of somatic cells to induced pluripotent stem (iPS) cells a promising approach for targeted genetic modifications. The first attempts to produce iPS cells from livestock species were made using retro- and lentiviral vectors, which are associated with an increased risk of insertional mutagenesis and which are not easily removable after reprogramming. Here, we describe a nonviral method for the derivation of porcine and bovine iPS cells, using Sleeping Beauty (SB) and piggyBac (PB) transposon systems. The transposons encode the murine or primate reprogramming factors OCT4, SOX2, KLF4, MYC, and LIN28, separated by self-cleaving peptide sequences, respectively. In addition, the PB transposon cassette contains a NANOG-cDNA. The SB or PB transposon-reprogrammed porcine iPS cells expressed typical markers of embryonic stem cells (SSEA1, SSEA4, TRA-1-60, and endogenous stemness genes), showed long-term proliferation under feeder-free culture conditions, differentiated into cell types of the 3 germ layers in vitro, and formed teratomas after subcutaneous injection into immune-deficient nude mice. Both transposon systems are currently being tested in bovine fibroblasts. The results are a major step towards the derivation of authentic porcine and bovine iPS cells, in which the transposon transgenes can be eliminated after reprogramming.


Author(s):  
Angela Di Baldassarre ◽  
Elisa Cimetta ◽  
Sveva Bollini ◽  
Giulia Gaggi ◽  
Barbara Ghinassi

Human induced pluripotent stem cells (hiPSCs) are reprogrammed cells that have hallmarks similar to embryonic stem cells including the capacity of self-renewal and differentiation into cardiac myocytes. The improvements in reprogramming and differentiating methods achieved in the past 10 years widened the use of hiPSCs, especially in cardiac research. hiPSC-derived cardiac myocytes (CMs) recapitulate phenotypic differences caused by genetic variations, making them human attractive disease models and useful tools for drug discovery and toxicology testing. In addition, hiPSCs can be used as source cells for cardiac regeneration in animal models. Here, we review the advances in the genetic and epigenetic control of cardiomyogenesis that underlies the significant improvement of the induced reprogramming of somatic cells to CMs. We also cover the phenotypic characteristics of the hiPSCs derived CMs, their ability to rescue injured CMs through paracrine effects, the novel approaches in tissue engineering for hiPSC-derived cardiac tissue generation, and finally, their potential use in biomedical applications.


2019 ◽  
Vol 41 (25) ◽  
pp. 2397-2404 ◽  
Author(s):  
Marcin Wysoczynski ◽  
Roberto Bolli

Abstract Despite the well-documented capacity of embryonic stem cells (ESCs) to differentiate into cardiomyocytes, transplantation of ESCs or ESC-derived cells is plagued by several formidable problems, including graft rejection, arrhythmias, and potential risk of teratomas. Life-long immunosuppression is a disease in itself. Transplantation of human ESC-derived cells in primates causes life-threatening arrhythmias, and the doses used to show efficacy are not clinically relevant. In contemporary clinical research, the margin of tolerance for such catastrophic effects as malignancies is zero, and although the probability of tumours can be reduced by ESC differentiation, it is unlikely to be completely eliminated, particularly when billions of cells are injected. Although ESCs and ESC-derived cells were touted as capable of long-term regeneration, these cells disappear rapidly after transplantation and there is no evidence of long-term engraftment, let alone regeneration. There is, however, mounting evidence that they act via paracrine mechanisms—just like adult cells. To date, no controlled clinical trial of ESC-derived cells in cardiovascular disease has been conducted or even initiated. In contrast, adult cells have been used in thousands of patients with heart disease, with no significant adverse effects and with results that were sufficiently encouraging to warrant Phase II and III trials. Furthermore, induced pluripotent stem cells offer pluripotency similar to ESCs without the need for lifelong immunosuppression. After two decades, the promise that ESC-derived cells would regenerate dead myocardium has not been fulfilled. The most reasonable interpretation of current data is that ESC-based therapies are not likely to have clinical application for heart disease.


2015 ◽  
Vol 10s1 ◽  
pp. BMI.S20058 ◽  
Author(s):  
Yang Gao ◽  
Jeffrey G. Jacot

Synthetic patches and fixed grafts currently used in the repair of congenital heart defects are nonliving, noncontractile, and not electrically responsive, leading to increased risk of complication, reoperation, and sudden cardiac death. Studies suggest that tissue-engineered patches made from living, functional cells could grow with the patient, facilitate healing, and help recover cardiac function. In this paper, we review the research into possible sources of cardiomyocytes and other cardiac cells, including embryonic stem cells, induced pluripotent stem cells, mesenchymal stem cells, adipose-derived stem cells, umbilical cord blood cells, amniotic fluid-derived stem cells, and cardiac progenitor cells. Each cell source has advantages, but also has technical hurdles to overcome, including heterogeneity, functional maturity, immunogenicity, and pathogenicity. Additionally, biomaterials used as patch materials will need to attract and support desired cells and induce minimal immune responses.


Bionatura ◽  
2019 ◽  
Vol 4 (3) ◽  
pp. 948-952
Author(s):  
Alejandra Cevallos ◽  
Abigail Solórzano

Stem cells can become different types of cells and have the potential to divide and self-renew. There are two types of stem cells, first the embryonic stem cells and second the adult stem cells, both help in regeneration or repair tissues of an organism, for this reason, the stem cells are being used to renew the world of medicine. Stem cells are obtained from three sources: the first can be our own body that where certain organs still have some cells still not completely differentiated. The second source is the embryos when they are in the blastocyst phase (between five to fourteen days from conception), and the third source can be in the cells of the skin, liver or another cell type that have been modified to behave like embryonic stem cells. With this therapy, we would find ourselves before an inexhaustible source to repair the tissues and organs that were damaged in our bodies. One of the main causes of mortality in heart failure, but with the help of cell therapy has been studied the repair of cardiac tissue with the stem cell transplant. The objective of the cellular transplantation is that the transplanted cells in the heart tissue manage to regenerate, renewed, and repair any part of the heart tissue damaged.


2020 ◽  
Vol 15 (4) ◽  
pp. 301-307 ◽  
Author(s):  
Gaifang Wang ◽  
Maryam Farzaneh

Primary Ovarian Insufficiency (POI) is one of the main diseases causing female infertility that occurs in about 1% of women between 30-40 years of age. There are few effective methods for the treatment of women with POI. In the past few years, stem cell-based therapy as one of the most highly investigated new therapies has emerged as a promising strategy for the treatment of POI. Human pluripotent stem cells (hPSCs) can self-renew indefinitely and differentiate into any type of cell. Human Embryonic Stem Cells (hESCs) as a type of pluripotent stem cells are the most powerful candidate for the treatment of POI. Human-induced Pluripotent Stem Cells (hiPSCs) are derived from adult somatic cells by the treatment with exogenous defined factors to create an embryonic-like pluripotent state. Both hiPSCs and hESCs can proliferate and give rise to ectodermal, mesodermal, endodermal, and germ cell lineages. After ovarian stimulation, the number of available oocytes is limited and the yield of total oocytes with high quality is low. Therefore, a robust and reproducible in-vitro culture system that supports the differentiation of human oocytes from PSCs is necessary. Very few studies have focused on the derivation of oocyte-like cells from hiPSCs and the details of hPSCs differentiation into oocytes have not been fully investigated. Therefore, in this review, we focus on the differentiation potential of hPSCs into human oocyte-like cells.


2009 ◽  
Vol 1 (1) ◽  
pp. 76-82 ◽  
Author(s):  
Mark Denham ◽  
Jessie Leung ◽  
Cheryl Tay ◽  
Raymond C.B. Wong ◽  
Peter Donovan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document