scholarly journals The Potential of Different Origin Stem Cells in Modulating Oral Bone Regeneration Processes

Cells ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 29 ◽  
Author(s):  
Smaranda Dana Buduru ◽  
Diana Gulei ◽  
Alina-Andreea Zimta ◽  
Adrian Bogdan Tigu ◽  
Diana Cenariu ◽  
...  

Tissue engineering has gained much momentum since the implementation of stem cell isolation and manipulation for regenerative purposes. Despite significant technical improvements, researchers still have to decide which strategy (which type of stem cell) is the most suitable for their specific purpose. Therefore, this short review discusses the advantages and disadvantages of the three main categories of stem cells: embryonic stem cells, mesenchymal stem cells and induced pluripotent stem cells in the context of bone regeneration for dentistry-associated conditions. Importantly, when deciding upon the right strategy, the selection needs to be made in concordance with the morbidity and the life-threatening level of the condition in discussion. Therefore, even when a specific type of stem cell holds several advantages over others, their availability, invasiveness of the collection method and ethical standards become deciding parameters.

2021 ◽  
Vol 22 (9) ◽  
pp. 5011
Author(s):  
Daehwan Kim ◽  
Sangho Roh

Stem cell research is essential not only for the research and treatment of human diseases, but also for the genetic preservation and improvement of animals. Since embryonic stem cells (ESCs) were established in mice, substantial efforts have been made to establish true ESCs in many species. Although various culture conditions were used to establish ESCs in cattle, the capturing of true bovine ESCs (bESCs) has not been achieved. In this review, the difficulty of establishing bESCs with various culture conditions is described, and the characteristics of proprietary induced pluripotent stem cells and extended pluripotent stem cells are introduced. We conclude with a suggestion of a strategy for establishing true bESCs.


Author(s):  
Anja Trillhaase ◽  
Marlon Maertens ◽  
Zouhair Aherrahrou ◽  
Jeanette Erdmann

AbstractStem cell technology has been around for almost 30 years and in that time has grown into an enormous field. The stem cell technique progressed from the first successful isolation of mammalian embryonic stem cells (ESCs) in the 1990s, to the production of human induced-pluripotent stem cells (iPSCs) in the early 2000s, to finally culminate in the differentiation of pluripotent cells into highly specialized cell types, such as neurons, endothelial cells (ECs), cardiomyocytes, fibroblasts, and lung and intestinal cells, in the last decades. In recent times, we have attained a new height in stem cell research whereby we can produce 3D organoids derived from stem cells that more accurately mimic the in vivo environment. This review summarizes the development of stem cell research in the context of vascular research ranging from differentiation techniques of ECs and smooth muscle cells (SMCs) to the generation of vascularized 3D organoids. Furthermore, the different techniques are critically reviewed, and future applications of current 3D models are reported. Graphical abstract


Author(s):  
Fariha Khaliq

Stem cell therapy is an approach to use cells that have the ability of self-renewal and to differentiate into different types of functional cells that are obtained from embryo and other postnatal sources to treat multiple disorders. These cells can be differentiated into different types of stem cells based on their specific characteristics to be totipotent, unipotent, multipotent or pluripotent. As potential therapy, pluripotent stem cells are considered to be the most interesting as they can be differentiated into different type of cells with similar characteristics as embryonic stem cells. Induced pluripotent stem cells (iPSCs) are adult cells that are reprogrammed genetically into stem cells from human fibroblasts through expressing genes and transcription factors at different time intervals. In this review, we will discuss the applications of stem cell therapy using iPSCs technology in treating neurodegenerative disorder such that Alzheimer’s disease (AD), Parkinson’s disease (PD), and Amyotrophic Lateral Sclerosis (ALS). We have also broadly highlighted the significance of pluripotent stem cells in stem cell therapy.


2021 ◽  
Vol 26 ◽  
pp. 169-191
Author(s):  
Emma E. Redfield ◽  
Erin K. Luciano ◽  
Monica J. Sewell ◽  
Lucas A. Mitzel ◽  
Isaac J. Sanford ◽  
...  

This study looks at the number of clinical trials involving specific stem cell types. To our knowledge, this has never been done before. Stem cell clinical trials that were conducted at locations in the US and registered on the National Institutes of Health database at ‘clinicaltrials.gov’ were categorized according to the type of stem cell used (adult, cancer, embryonic, perinatal, or induced pluripotent) and the year that the trial was registered. From 1999 to 2014, there were 2,357 US stem cell clinical trials registered on ‘clinicaltrials.gov,’ and 89 percent were from adult stem cells and only 0.12 percent were from embryonic stem cells. This study concludes that embryonic stem cells should no longer be used for clinical study because of their irrelevance, moral questions, and induced pluripotent stem cells.


2012 ◽  
Vol 17 (5) ◽  
pp. 683-691 ◽  
Author(s):  
Tadahiro Shinozawa ◽  
Hatsue Furukawa ◽  
Eimei Sato ◽  
Kenji Takami

Cardiomyocytes derived from embryonic stem cells (ES-CMs) and induced pluripotent stem cells (iPS-CMs) are useful for toxicity and pharmacology screening. In the present study, we found that cardiomyocyte-rich beating cell clusters (CCs) emerged from murine embryonic stem cell (mESC)–derived beating EBs and from human-induced pluripotent stem cell (hiPSC)–derived beating EBs dissociated by gentle pipetting with a thin glass pipette. The percentage of cardiac troponin T (cTnT)–positive cells in the beating CCs obtained from mESC-derived and hiPSC-derived beating EBs was higher (81.5% and 91.6%, respectively) than in beating-undissociated EBs (13.7% and 67.1%, respectively). For mESCs, the yield of cTnT-positive cells from beating CCs was estimated to be 1.6 times higher than that of beating EBs. The bromodeoxyuridine labeling index of mouse ES-CMs and human iPS-CMs in beating CCs was 1.5- and 3.2-fold, respectively, greater than those in beating EBs. To investigate the utility of the cells in toxicity assessment, we showed that doxorubicin, a cardiotoxic drug, induced myofilament disruption in cardiomyocytes isolated by this method. This simple method enables preparation of mouse ES-CMs and human iPS-CMs with better proliferative activity than beating EBs not dissociated by pipetting, and the cardiomyocytes are useful for drug-induced myocardial toxicity testing.


2020 ◽  
Vol 21 (15) ◽  
pp. 5467
Author(s):  
Daniela Gois Beghini ◽  
Samuel Iwao Horita ◽  
Cynthia Machado Cascabulho ◽  
Luiz Anastácio Alves ◽  
Andrea Henriques-Pons

Induced pluripotent stem (iPS) cells are laboratory-produced cells that combine the biological advantages of somatic adult and stem cells for cell-based therapy. The reprogramming of cells, such as fibroblasts, to an embryonic stem cell-like state is done by the ectopic expression of transcription factors responsible for generating embryonic stem cell properties. These primary factors are octamer-binding transcription factor 4 (Oct3/4), sex-determining region Y-box 2 (Sox2), Krüppel-like factor 4 (Klf4), and the proto-oncogene protein homolog of avian myelocytomatosis (c-Myc). The somatic cells can be easily obtained from the patient who will be subjected to cellular therapy and be reprogrammed to acquire the necessary high plasticity of embryonic stem cells. These cells have no ethical limitations involved, as in the case of embryonic stem cells, and display minimal immunological rejection risks after transplant. Currently, several clinical trials are in progress, most of them in phase I or II. Still, some inherent risks, such as chromosomal instability, insertional tumors, and teratoma formation, must be overcome to reach full clinical translation. However, with the clinical trials and extensive basic research studying the biology of these cells, a promising future for human cell-based therapies using iPS cells seems to be increasingly clear and close.


eLife ◽  
2013 ◽  
Vol 2 ◽  
Author(s):  
Ricardo Antonio Rosselló ◽  
Chun-Chun Chen ◽  
Rui Dai ◽  
Jason T Howard ◽  
Ute Hochgeschwender ◽  
...  

Cells are fundamental units of life, but little is known about evolution of cell states. Induced pluripotent stem cells (iPSCs) are once differentiated cells that have been re-programmed to an embryonic stem cell-like state, providing a powerful platform for biology and medicine. However, they have been limited to a few mammalian species. Here we found that a set of four mammalian transcription factor genes used to generate iPSCs in mouse and humans can induce a partially reprogrammed pluripotent stem cell (PRPSCs) state in vertebrate and invertebrate model organisms, in mammals, birds, fish, and fly, which span 550 million years from a common ancestor. These findings are one of the first to show cross-lineage stem cell-like induction, and to generate pluripotent-like cells for several of these species with in vivo chimeras. We suggest that the stem-cell state may be highly conserved across a wide phylogenetic range.


Sign in / Sign up

Export Citation Format

Share Document