scholarly journals Grain Yield, Heat use Efficiency and Water use Efficiency of Diverse Wheat (Tritcum aetivum L.) Varieties under Different Sowing Environments in North-Western India

Author(s):  
Hari Ram ◽  
Maninder Kaur

Background: Wheat is an important food crop of world. This crop has the wider adaptability due to its genetic makeup. The sowing environment and varieties interaction plays important role to enhance its productivity and optimum utilization of the resources. As this crop has wider adaptability so we planned our experiment to study the grain yield, heat use and water use efficiency of diverse wheat varieties which have been recommended in different wheat growing zones, sown at different environment in North-western India, to increase the varietal spectrum.Methods: The field experiment was conducted in 2017-18 and 2018-19 at the research farm of the Punjab Agricultural University, Ludhiana, India. The experiment was conducted with four sowing dates (November 5, November 25, December 15 and January 5) in main plot and six wheat varieties (HS 562, HD 2967, HD 3086, HI 1544, MACS 6222 and WR 544) in sub-plot of split plot design with three replications. Result: The wheat crop sown on November 5 recorded the highest emergence count, plant height, heat use efficiency, normalized difference vegetative index, yield attributes, grain yield and water use efficiency than later sowing dates. Among the wheat varieties, HS 562 recommended for northern hill zone recorded heat use efficiency, helio-thermal use efficiency, at Leaf value, effective tillers, grains per earhead, grain yield and water use efficiency similar to HD 3086 recommended for North-western zone. The varieties recommended for other zones like HI 1544, MACS 6222 and WR 544 could not perform similar to the HD 3086. 

Water ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1318 ◽  
Author(s):  
Zsuzsanna Farkas ◽  
Emese Varga-László ◽  
Angéla Anda ◽  
Ottó Veisz ◽  
Balázs Varga

The effects of simulated waterlogging, drought stress and their combination were examined in a model experiment in Martonvásár, Hungary, in 2018. Four modern winter wheat varieties (‘Mv Toborzó’ (TOB), ‘Mv Mambó’ (MAM), ‘Mv Karizma’ (KAR), ‘Mv Pálma’ (PAL)) and one old Hungarian winter wheat cultivar (‘Bánkúti 1201’ (BKT)) were tested. Apart from the control treatment (C), the plants were exposed to two different abiotic stresses. To simulate waterlogging (WL), plants were flooded at four leaf stage, while in the WL + D treatment, they were stressed both by waterlogging and by simulated drought stress at the early stage of plant development and at the heading stage, respectively. The waterlogging treatment resulted in a significant decrease in plant biomass (BKT, TOB), number of spikes (TOB), grain yield (BKT, TOB), water use (BTK) and water-use efficiency (TOB, MAM, PAL) compared to the controls. The combined treatment (WL + D) led to a significant decrease in plant height (BTK, MAM, KAR), number of spikes (BTK, TOB, MAM, KAR), thousand kernel weight (TOB), harvest index (BTK), biomass, grain yield, water-use efficiency (in all varieties) and water use (BKT, TOB, MAM, KAR) of the plants. The best water-use efficiency was observed for MAM; therefore, this genotype could be recommended for cultivation at stress prone areas. The varieties MAM, KAR and PAL also showed good adaptability.


1984 ◽  
Vol 20 (2) ◽  
pp. 151-159
Author(s):  
D. Boobathi Babu ◽  
S. P. Singh

SUMMARYThe results of field experiments conducted in the spring seasons (February/March to June) of 1980 and 1981 indicate that grain yields of sorghum increased with increase in frequency of irrigation. Crops sprayed with atrazine or CCC yielded more than the unsprayed control; maximum yields were obtained by the application of atrazine at 200 g ha−1. Water use efficiency decreased with increase in irrigation but increased as a result of spraying crops with either chemical. Irrigation water can be saved by the spraying of atrazine or CCC onto spring-sown sorghum.


1984 ◽  
Vol 20 (2) ◽  
pp. 151-159 ◽  
Author(s):  
D. Boobathi Babu ◽  
S. P. Singh

SUMMARYThe results of field experiments conducted in the spring seasons (February/March to June) of 1980 and 1981 indicate that grain yields of sorghum increased with increase in frequency of irrigation. Crops sprayed with atrazine or CCC yielded more than the unsprayed control; maximum yields were obtained by the application of atrazine at 200 g ha−1. Water use efficiency decreased with increase in irrigation but increased as a result of spraying crops with either chemical. Irrigation water can be saved by the spraying of atrazine or CCC onto spring-sown sorghum.


1982 ◽  
Vol 98 (1) ◽  
pp. 103-108 ◽  
Author(s):  
P. Raghavulu ◽  
S. P. Singh

SUMMARYField experiments consisting of three mulch treatments (no mulch, straw mulch and dust mulch) and six transpiration suppressants (no suppressant, kaolin, phenyl mercuric acetate, atrazine, mobileaf or alachlor and 2-chloro ethyl trimethyl ammonium chloride) were conducted under dryland conditions during the summer rainy seasons (July–November) of 1976, 1977 and 1978. Compared with no mulch, straw mulch increased yield in all 3 years, water use efficiency in 1977 and 1978, and uptake of N and of P in 1977 and 1978. Dust mulch had only a marginal advantage. Amongst transpiration suppressants, only kaolin and atrazine had a marked effect. Both these chemicals increased grain yield, water use efficiency and uptake of N and P, compared with no suppressant.


2017 ◽  
Vol 9 (1) ◽  
pp. 286-290
Author(s):  
M. Paramasivan ◽  
A. Selvarani

Four hundred and sixteen on-farm demonstrations on system of rice intensification (SRI) were carried out in 350 hectares of farmer’s fields in Sankarankovil, Vasudevanallur and Kuruvikulam blocks of Tirunelveli district of Tamil Nadu from 2008-09 to 2010-11 under Tamil Nadu – Irrigated Agriculture Modernization and Water Bodies Restoration and Management (TN-IAMWARM) project. Two methods viz., SRI and conventional were compared. The results revealed that the adoption of SRI favorable influenced yield attributes and yield of rice. The maximum grain yield (8222 kg ha-1) obtained from SRI which was higher than conventional method (6534 kg ha-1). Higher grain yield coupled with substantial water saving to the tune of 37.1 per cent resulted in higher water use efficiency of rice under SRI method. The best net income ( Rs. 50, 587) and benefit: cost ratio (3.64) were also associated with SRI than conventional method of rice cultivation. The cost of cultivation was comparatively lesser in SRI which re-sulted in gaining an additional income of Rs. 8080 ha-1 as compared to conventional method of rice cultivation. The system of rice intensification (SRI) proved its benefits in this basin.


Plant Science ◽  
2016 ◽  
Vol 251 ◽  
pp. 44-53 ◽  
Author(s):  
Zoubeir Chamekh ◽  
Sawsen Ayadi ◽  
Chahine Karmous ◽  
Youssef Trifa ◽  
Hajer Amara ◽  
...  

2017 ◽  
Vol 43 (6) ◽  
pp. 899 ◽  
Author(s):  
Ming HUANG ◽  
Zhao-Hui WANG ◽  
Lai-Chao LUO ◽  
Sen WANG ◽  
Ming BAO ◽  
...  

Agriculture ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 313
Author(s):  
Guoqiang Zhang ◽  
Bo Ming ◽  
Dongping Shen ◽  
Ruizhi Xie ◽  
Peng Hou ◽  
...  

Achieving optimal balance between maize yield and water use efficiency is an important challenge for irrigation maize production in arid areas. In this study, we conducted an experiment in Xinjiang China in 2016 and 2017 to quantify the response of maize yield and water use to plant density and irrigation schedules. The treatments included four irrigation levels: 360 (W1), 480 (W2), 600 (W3), and 720 mm (W4), and five plant densities: 7.5 (D1), 9.0 (D2), 10.5 (D3), 12.0 (D4), and 13.5 plants m−2 (D5). The results showed that increasing the plant density and the irrigation level could both significantly increase the leaf area index (LAI). However, LAI expansion significantly increased evapotranspiration (ETa) under irrigation. The combination of irrigation level 600 mm (W3) and plant density 12.0 plants m−2 (D4) produced the highest maize yield (21.0–21.2 t ha−1), ETa (784.1–797.8 mm), and water use efficiency (WUE) (2.64–2.70 kg m−3), with an LAI of 8.5–8.7 at the silking stage. The relationship between LAI and grain yield and evapotranspiration were quantified, and, based on this, the relationship between water use and maize productivity was analyzed. Moreover, the optimal LAI was established to determine the reasonable irrigation level and coordinate the relationship between the increase in grain yield and the decrease in water use efficiency.


Sign in / Sign up

Export Citation Format

Share Document