scholarly journals The Efficiency of Residues of Rosa Damasena Powder in Removing Reactive Red 198 Dye from Synthetic Textile Effluent

2014 ◽  
Vol 1 (4) ◽  
pp. 271-280
Author(s):  
محمد میری ◽  
رضا علی فلاح زاده ◽  
محمد تقی قانعیان ◽  
مریم غلامی ◽  
رعنا مهدوی فر ◽  
...  
2021 ◽  
Vol 204 (1) ◽  
Author(s):  
Sheela Thangaraj ◽  
Paul Olusegun Bankole ◽  
Senthil Kumar Sadasivam ◽  
Varuna Kumarvel

2010 ◽  
Vol 9 (3) ◽  
pp. 351-360 ◽  
Author(s):  
Abdelnaser Omran ◽  
Hamidi Abdul Aziz ◽  
Marniyanti Mamat Noor

2000 ◽  
Vol 42 (5-6) ◽  
pp. 329-336 ◽  
Author(s):  
M. Quezada ◽  
I. Linares ◽  
G. Buitrón

The degradation of azo dyes in an aerobic biofilter operated in an SBR system was studied. The azo dyes studied were Acid Red 151 and a textile effluent containing basic dyes (Basic Blue 41, Basic Red 46 and 16 and Basic Yellow 28 and 19). In the case of Acid Red 151 a maximal substrate degradation rate of 288 mg AR 151/lliquid·d was obtained and degradation efficiencies were between 60 and 99%. Mineralization studies showed that 73% (as carbon) of the initial azo dye was transformed to CO2 by the consortia. The textile effluent was efficiently biodegraded by the reactor. A maximal removal rate of 2.3 kg COD/lliquid·d was obtained with removal efficiencies (as COD) varying from 76 to 97%. In all the cycles the system presented 80% of colour removal.


Author(s):  
Paria Mirzapour ◽  
Bahareh Kamyab Moghadas ◽  
Sajad Tamjidi ◽  
Hossein Esmaeili

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mohammad Hadi Dehghani ◽  
Mehdi Salari ◽  
Rama Rao Karri ◽  
Farshad Hamidi ◽  
Roghayeh Bahadori

AbstractIn the present study, reactive red 198 (RR198) dye removal from aqueous solutions by adsorption using municipal solid waste (MSW) compost ash was investigated in batch mode. SEM, XRF, XRD, and BET/BJH analyses were used to characterize MSW compost ash. CNHS and organic matter content analyses showed a low percentage of carbon and organic matter to be incorporated in MSW compost ash. The design of adsorption experiments was performed by Box–Behnken design (BBD), and process variables were modeled and optimized using Box–Behnken design-response surface methodology (BBD-RSM) and genetic algorithm-artificial neural network (GA-ANN). BBD-RSM approach disclosed that a quadratic polynomial model fitted well to the experimental data (F-value = 94.596 and R2 = 0.9436), and ANN suggested a three-layer model with test-R2 = 0.9832, the structure of 4-8-1, and learning algorithm type of Levenberg–Marquardt backpropagation. The same optimization results were suggested by BBD-RSM and GA-ANN approaches so that the optimum conditions for RR198 absorption was observed at pH = 3, operating time = 80 min, RR198 = 20 mg L−1 and MSW compost ash dosage = 2 g L−1. The adsorption behavior was appropriately described by Freundlich isotherm, pseudo-second-order kinetic model. Further, the data were found to be better described with the nonlinear when compared to the linear form of these equations. Also, the thermodynamic study revealed the spontaneous and exothermic nature of the adsorption process. In relation to the reuse, a 12.1% reduction in the adsorption efficiency was seen after five successive cycles. The present study showed that MSW compost ash as an economical, reusable, and efficient adsorbent would be desirable for application in the adsorption process to dye wastewater treatment, and both BBD-RSM and GA-ANN approaches are highly potential methods in adsorption modeling and optimization study of the adsorption process. The present work also provides preliminary information, which is helpful for developing the adsorption process on an industrial scale.


Sign in / Sign up

Export Citation Format

Share Document