Twelve invasive plant taxa in US western riparian ecosystems

2008 ◽  
Vol 27 (4) ◽  
pp. 949-966 ◽  
Author(s):  
Paul L. Ringold ◽  
Teresa K. Magee ◽  
David V. Peck
Plants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1973
Author(s):  
Denny Kurniadie ◽  
Ryan Widianto ◽  
Dedi Widayat ◽  
Uum Umiyati ◽  
Ceppy Nasahi ◽  
...  

Ludwigia decurrens Walter is a dicotyledonous plant belonging to the family Onagraceae. It is native to Central Eastern USA but has been spreading quickly and has naturalized in aquatic and riparian ecosystems (including rice paddy fields) in many countries; therefore, it is now considered an invasive noxious weed. L. decurrens is highly competitive with rice and causes a significant reduction in rice production. The objective of the present study was to evaluate the efficacy of the herbicide penoxsulam for the control of L. decurrens in rice fields. The seeds of L. decurrens were collected from four villages in Indonesia, and penoxsulam was applied to L. decurrens in seven dosages (0, 2.5, 5, 10, 20, 40, and 80 g a.i. ha−1) 3 weeks after seed sowing. The plant populations from Hegarmanah, Jatisari, and Joho showed complete mortality at the recommended dosage of penoxsulam (10 g a.i. ha−1). However, the plants from Demakan grew, flowered, and produced seeds 56 days after treatment with 40 g a.i. ha−1 of penoxsulam. The resistance index value of the population was 36.06. This is the first report of a penoxsulam-resistant weed from a dicotyledonous plant species and also the first report of a herbicide-resistant population of L. decurrens. The appearance of herbicide-resistant L. decurrens is a serious issue from both an environmental and an economic perspective, especially since protected forest and freshwater ecosystems are located at a short distance from the study area. Further research is needed to evaluate herbicide mixtures and/or the rotation of herbicide action sites. The identification of the penoxsulam-resistance mechanism in L. decurrens is also necessary to develop a herbicide resistance management strategy.


1989 ◽  
Vol 7 (2) ◽  
pp. 60-64 ◽  
Author(s):  
Kathryn Baird

2014 ◽  
Vol 32 (2) ◽  
pp. 212-213
Author(s):  
E. K. Espeland
Keyword(s):  

2021 ◽  
pp. 1-24
Author(s):  
Chad F. Hammer ◽  
John S. Gunn

Abstract Non-native invasive plant species are a major cause of ecosystem degradation and impairment of ecosystem service benefits in the United States. Forested riparian areas provide many ecosystem service benefits and are vital to maintaining water quality of streams and rivers. These systems are also vulnerable to natural disturbances and invasion by non-native plants. We assessed whether planting native trees on disturbed riparian sites may increase biotic resistance to invasive plant establishment in central Vermont in the northeastern United States. The density (stems/m2) of invasive stems was higher in non-planted sites (x̄=4.1 stems/m2) compared to planted sites (x̄=1.3 stems/m2). More than 90% of the invasive plants were Japanese knotweed (Fallopia japonica). There were no significant differences in total stem density of native vegetation between planted and non-planted sites. Other measured response variables such as native tree regeneration, species diversity, soil properties and soil function showed no significant differences or trends in the paired riparian study sites. The results of this case study indicate that tree planting in disturbed riparian forest areas may assist conservation efforts by minimizing the risk of invasive plant colonization.


Author(s):  
Igor Karlovits ◽  
Gregor Lavrič ◽  
Urška Kavčič ◽  
Vladimir Zorić

Author(s):  
Hua Xu ◽  
Ping Chang ◽  
Shaoshan Li ◽  
Jianguo Lu ◽  
Xuejun Lin ◽  
...  

Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 245
Author(s):  
Hyung-Eun An ◽  
Kang Hyun Lee ◽  
Ye Won Jang ◽  
Chang-Bae Kim ◽  
Hah Young Yoo

As greenhouse gases and environmental pollution become serious, the demand for alternative energy such as bioethanol has rapidly increased, and a large supply of biomass is required for bioenergy production. Lignocellulosic biomass is the most abundant on the planet and a large part of it, the second-generation biomass, has the advantage of not being a food resource. In this study, Sicyos angulatus, known as an invasive plant (harmful) species, was used as a raw material for bioethanol production. In order to improve enzymatic hydrolysis, S. angulatus was pretreated with different NaOH concentration at 121 °C for 10 min. The optimal NaOH concentration for the pretreatment was determined to be 2% (w/w), and the glucan content (GC) and enzymatic digestibility (ED) were 46.7% and 55.3%, respectively. Through NaOH pretreatment, the GC and ED of S. angulatus were improved by 2.4-fold and 2.5-fold, respectively, compared to the control (untreated S. angulatus). The hydrolysates from S. angulatus were applied to a medium for bioethanol fermentation of Saccharomyces cerevisiae K35. Finally, the maximum ethanol production was found to be 41.3 g based on 1000 g S. angulatus, which was 2.4-fold improved than the control group.


2021 ◽  
Author(s):  
Johanna Yletyinen ◽  
George L. W. Perry ◽  
Olivia R. Burge ◽  
Norman W. H. Mason ◽  
Philip Stahlmann‐Brown

Sign in / Sign up

Export Citation Format

Share Document