scholarly journals Isolation and characterization of pathogenic Vibrio on tiger grouper Epinephelus fuscoguttatus

2013 ◽  
Vol 11 (1) ◽  
pp. 28 ◽  
Author(s):  
. Ilmiah ◽  
. Sukenda ◽  
. Widanarni ◽  
Enang Harris

<p>This study was aimed to obtain pathogenic bacterial isolate causing vibriosis disease. Isolation of <em>Vibrio</em> was conducted from maribound tiger grouper collected from floating net cage in Barru Regency using TCBS medium. Ability to cause vibriosis was confirmed by pathogenicity test performed by mean injecting the tiger grouper juveniles with bacterial suspension at concentration of 10<sup>6</sup> CFU/fish and mortality of fish during seven days observation then was noted. Then, the <em>Vibrio</em> pathogenic isolate was characterized and identified based on morphology, growth, and biochemical features. Moreover, the most pathogenic isolate was identified by molecular analysis of 16S-rRNA gene sequences. The results showed that three potential isolates caused Vibriosis disease in tiger grouper culture. The isolates tested were biochemically identified as <em>V</em><em>ibrio</em><em> metschnikovii</em>,<em> V</em><em>.</em><em> parahaemolyticus</em>, and <em>V. mimicus</em>. The most virulent among isolates was <em>V. parahaemolyticus.</em></p> <p>Keywords: isolation, characterization, pathogenic, vibriosis, tiger grouper</p>

Author(s):  
Ajay S. Arya ◽  
Minh T. H. Hang ◽  
Mark A. Eiteman

Bacteria were isolated from wastewater and soil containing charred wood remnants based on their ability to use levoglucosan as a sole carbon source and on their levoglucosan dehydrogenase (LGDH) activity. On the basis of their 16S rRNA gene sequences, these bacteria represented diverse genera of Microbacterium, Paenibacillus , Shinella , and Klebsiella . Genomic sequencing of the isolates verified that two isolates represented novel species, Paenibacillus athensensis MEC069 T and Shinella sumterensis MEC087 T , while the remaining isolates were closely related to either Microbacterium lacusdiani or Klebsiella pneumoniae . The genetic sequence of LGDH, lgdA , was found in the genomes of these four isolates as well as Pseudarthrobacter phenanthrenivorans Sphe3. The identity of the P. phenanthrenivorans LGDH was experimentally verified following recombinant expression in E. coli . Comparison of the putative genes surrounding lgdA in the isolate genomes indicated that several other gene products facilitate the bacterial catabolism of levoglucosan, including a putative sugar isomerase and several transport proteins. Importance Levoglucosan is the most prevalent soluble carbohydrate remaining after high temperature pyrolysis of lignocellulosic biomass, but it is not fermented by typical production microbes such as Escherichia coli and Saccharomyces cerevisiae . A few fungi metabolize levoglucosan via the enzyme levoglucosan kinase, while several bacteria metabolize levoglucosan via levoglucosan dehydrogenase. This study describes the isolation and characterization of four bacterial species which degrade levoglucosan. Each isolate is shown to contain several genes within an operon involved in levoglucosan degradation, furthering our understanding of bacteria which metabolize levoglucosan.


2002 ◽  
Vol 45 (12) ◽  
pp. 175-179 ◽  
Author(s):  
J.H. Shi ◽  
Y. Suzuki ◽  
B.-D. Lee ◽  
S. Nakai ◽  
M. Hosomi

We cultivated hundreds of sediment, soil, and manure samples taken from rivers and farms in a medium containing ethynylestradiol (EE2) as the sole source of carbon, so that microorganisms in the samples would acclimatize to the presence of EE2. Finally, we isolated an EE2-degrading microorganism, designated as strain HNS-1, from a cowshed sample. Based on its partial nucleotide sequence (563 bp) of the 28S rRNA gene, strain HNS-1 was identified as Fusarium proliferatum. Over 15 days, F. proliferatum strain HNS-1 removed 97% of EE2 at an initial concentration of 25 mg.L−1, with a first-order rate constant of 0.6 d−1. Unknown products of EE2 degradation, which may be more polar compounds that have a phenolic group, remained in the culture medium.


2017 ◽  
Vol 84 (3) ◽  
Author(s):  
Irene Cano ◽  
Ronny van Aerle ◽  
Stuart Ross ◽  
David W. Verner-Jeffreys ◽  
Richard K. Paley ◽  
...  

ABSTRACTOne of the fastest growing fisheries in the UK is the king scallop (Pecten maximusL.), also currently rated as the second most valuable fishery. Mass mortality events in scallops have been reported worldwide, often with the causative agent(s) remaining uncharacterized. In May 2013 and 2014, two mass mortality events affecting king scallops were recorded in the Lyme Bay marine protected area (MPA) in Southwest England. Histopathological examination showed gill epithelial tissues infected with intracellular microcolonies (IMCs) of bacteria resemblingRickettsia-like organisms (RLOs), often with bacteria released in vascular spaces. Large colonies were associated with cellular and tissue disruption of the gills. Ultrastructural examination confirmed the intracellular location of these organisms in affected epithelial cells. The 16S rRNA gene sequences of the putative IMCs obtained from infected king scallop gill samples, collected from both mortality events, were identical and had a 99.4% identity to 16S rRNA gene sequences obtained from “CandidatusEndonucleobacter bathymodioli” and 95% withEndozoicomonasspecies.In situhybridization assays using 16S rRNA gene probes confirmed the presence of the sequenced IMC gene in the gill tissues. Additional DNA sequences of the bacterium were obtained using high-throughput (Illumina) sequencing, and bioinformatic analysis identified over 1,000 genes with high similarity to protein sequences fromEndozoicomonasspp. (ranging from 77 to 87% identity). Specific PCR assays were developed and applied to screen for the presence of IMC 16S rRNA gene sequences in king scallop gill tissues collected at the Lyme Bay MPA during 2015 and 2016. There was 100% prevalence of the IMCs in these gill tissues, and the 16S rRNA gene sequences identified were identical to the sequence found during the previous mortality event.IMPORTANCEMolluscan mass mortalities associated with IMCs have been reported worldwide for many years; however, apart from histological and ultrastructural characterization, characterization of the etiological agents is limited. In the present work, we provide detailed molecular characterization of anEndozoicomonas-like organism (ELO) associated with an important commercial scallop species.


1989 ◽  
Vol 171 (6) ◽  
pp. 3479-3485 ◽  
Author(s):  
M Mevarech ◽  
S Hirsch-Twizer ◽  
S Goldman ◽  
E Yakobson ◽  
H Eisenberg ◽  
...  

2019 ◽  
Vol 24 (2) ◽  
pp. 7-16
Author(s):  
Nabin Rana ◽  
Saraswoti Khadka ◽  
Bishnu Prasad Marasini ◽  
Bishnu Joshi ◽  
Pramod Poudel ◽  
...  

 Realizing myxobacteria as a potential source of antimicrobial metabolites, we pursued research to isolate myxobacteria showing antimicrobial properties. We have successfully isolated three strains (NR-1, NR-2, NR-3) using the Escherichia coli baiting technique. These isolates showed typical myxobacterial growth characteristics. Phylogenetic analysis showed that all the strains (NR-1, NR-2, NR-3) belong to the family Archangiaceae, suborder Cystobacterineae, and order Myxococcales. Furthermore, 16S rRNA gene sequence similarity searched through BLAST revealed that strain NR-1 showed the closest similarity (91.8 %) to the type strain Vitiosangium cumulatum (NR-156939), NR-2 showed (98.8 %) to the type of Cystobacter badius (NR-043940), and NR-3 showed the closest similarity (83.5 %) to the type of strain Cystobacter fuscus (KP-306730). All isolates showed better growth in 0.5-1 % NaCl and pH around 7.0, whereas no growth was observed at pH 9.0 and below 5.0. All strains showed better growth at 32° C and hydrolyzed starch, whereas casein was efficiently hydrolyzed by NR-1 and NR-2. Besides, preliminary antimicrobial tests from crude extracts showed activities against Gram-positive, Gram-negative bacteria, and fungi. Our findings suggest that the arcane soil habitats of Nepal harbor myxobacteria with the capability to produce diverse antimicrobial activities that may be explored to overcome the rapidly rising global concern about antibiotic resistance.


2005 ◽  
Vol 71 (10) ◽  
pp. 5908-5919 ◽  
Author(s):  
Frederic Gich ◽  
Karin Schubert ◽  
Alke Bruns ◽  
Herbert Hoffelner ◽  
Jörg Overmann

ABSTRACT High-throughput cultivation was combined with rapid and group-specific phylogenetic fingerprinting in order to recover representatives of three freshwater bacterioplankton communities. A total of 570 bacterial cultures were obtained by employing the most probable number and MicroDrop techniques. The majority of the cultured bacteria were closely related to previously uncultured bacteria and grouped with the α-Proteobacteria, β-Proteobacteria, Actinobacteria, Firmicutes, or Flavobacteria-Cytophaga lineage. Correspondingly, the natural bacterioplankton community was analyzed by high-resolution phylogenetic fingerprinting of these five bacterial lineages. 16S rRNA gene fragments were generated for each lineage and subsequently separated by denaturing gradient gel electrophoresis. By the combination of five group-specific PCR protocols, the total number of 16S rRNA gene fingerprints generated from the natural communities was increased sixfold compared to conventional (eubacterial) fingerprinting. Four of the environmental α-Proteobacteria 16S rRNA gene sequences obtained from the natural community were found to be identical to those of bacterial isolates. One of these phylotypes was detected in 14 different cultures and hence represented the most frequently cultured bacterium. Three of these 14 strains were characterized in detail. Their complete 16S rRNA gene sequences showed only 93% similarity to that of Sandaracinobacter sibiricus, the closest relative described so far. The novel phylotype of bacterium is a strict aerobe capable of using numerous organic carbon substrates and contains bacteriochlorophyll a bound to two different photosynthetic light-harvesting complexes. Dot blot hybridization revealed that the strains occur in lakes of different trophic status and constitute up to 2% of the microbial community.


2016 ◽  
Vol 37 (3) ◽  
pp. 403-419 ◽  
Author(s):  
Paris Lavín ◽  
Cristian Atala ◽  
Jorge Gallardo-Cerda ◽  
Marcelo Gonzalez-Aravena ◽  
Rodrigo De La Iglesia ◽  
...  

AbstractSeveral bacteria that are associated with macroalgae can use phycocolloids as a carbon source. Strain INACH002, isolated from decomposing Porphyra (Rhodophyta), in King George Island, Antarctica, was screened and characterized for the ability to produce agarase and alginate-lyase enzymatic activities. Our strain INACH002 was identified as a member of the genus Flavobacterium, closely related to Flavobacterium faecale, using 16S rRNA gene analysis. The INACH002 strain was characterized as psychrotrophic due to its optimal temperature (17ºC) and maximum temperature (20°C) of growth. Agarase and alginate-lyase displayed enzymatic activities within a range of 10°C to 50°C, with differences in the optimal temperature to hydrolyze agar (50°C), agarose (50°C) and alginate (30°C) during the first 30 min of activity. Strain Flavobacterium INACH002 is a promising Antarctic biotechnological resource; however, further research is required to illustrate the structural and functional bases of the enzymatic performance observed during the degradation of different substrates at different temperatures.


Sign in / Sign up

Export Citation Format

Share Document