scholarly journals Estimation of genetic variability among different soybean genotypes for yield and quality traits under the agro-climatic condition of Rawalpindi –Pakistan

2019 ◽  
Vol 8 (1) ◽  
Author(s):  
Qadeer Ahmad
HortScience ◽  
2016 ◽  
Vol 51 (9) ◽  
pp. 1079-1086 ◽  
Author(s):  
Rolland Agaba ◽  
Phinehas Tukamuhabwa ◽  
Patrick Rubaihayo ◽  
Silver Tumwegamire ◽  
Andrew Ssenyonjo ◽  
...  

The amount of genotypic and phenotypic variability that exists in a species is important for selection and initiating breeding programs. Yam bean is grown locally in tropical countries of the Americas and Asia for their tasty storage roots, which usually have low dry matter content. The crop was recently introduced in Uganda and other East and Central African countries to supplement iron (Fe) and protein content in diets. This study aimed to estimate genetic variability for root yield and quality traits among 26 yam bean accessions in Uganda. A randomized complete block design was used with two replications across two ecogeographical locations and two seasons during 2012 and 2013. Near-infrared reflectance spectroscopy (NIRS) was used to determine quality of storage root samples. Significant differences among genotypes were observed for all traits except root protein, zinc (Zn), and phosphorus contents. Genotypic variance components () were significant for storage root fresh yield (SRFY), storage root dry matter (SRDM), storage root dry yield (SRDY), vine yield (VNY), fresh biomass yield (FBY), and storage root starch (STA) and Fe contents. For traits with significant the broad sense heritability estimates ranged from 58.4% for SRDY to 83.6% for FBY; and phenotypic coefficients of variation were high for SRFY (66%), SRDY (53.3%), VNY (60.5%), and FBY (59%), but low to medium for SRDM (22.6%), STA (15.1%), and Fe (21.3%). Similarly, the genotypic coefficients of variation were high for SRFY (56.7%), SRDY (53.3%), VNY (55%), and FBY (53.9%); and low for SRDM (20%), STA (12.4%), and Fe (17.8%). There were strong positive correlations between SRFY and both SRDY (r = 0.926) and FBY (r = 0.962), but low-to-moderate correlations among quality traits. It should be possible to breed for high dry matter yam beans by using low dry matter accessions due to the observed genetic variation ( = 9.3%2), which is important if the high dry matter Pachyrhizus tuberosus accessions (known as chuin) from Peru cannot be accessed. This study indicated substantial genetic variation for yield and quality traits in yam bean, demonstrating potential for adaptability to growing conditions and consumer needs in East and Central Africa and for genetic improvement through selection.


2021 ◽  
Vol 12 ◽  
Author(s):  
Qingsong Zhao ◽  
Xiaolei Shi ◽  
Long Yan ◽  
Chunyan Yang ◽  
Cong Liu ◽  
...  

Developing high yielding cultivars with outstanding quality traits are perpetual objectives throughout crop breeding operations. Confoundingly, both of these breeding objectives typically involve working with complex quantitative traits that can be affected by genetic and environmental factors. Establishing correlations of these complex traits with more easily identifiable and highly heritable traits can simplify breeding processes. In this study, two parental soybean genotypes contrasting in seed hilum size, yield, and seed quality, as well as 175 F9 recombinant inbred lines (RILs) derived from these parents, were grown in 3 years. The h2b of four hilum size, two quality and two yield traits, ranged from 0.72 to 0.87. The four observed hilum size traits exhibited significant correlation (P < 0.05) with most of seed yield and quality traits, as indicated by correlation coefficients varying from -0.35 to 0.42, which suggests that hilum size could be considered as a proxy trait for soybean yield and quality. Interestingly, among 53 significant quantitative trait loci (QTLs) with logarithm of odds (LOD) values ranging from 2.51 to 6.69 and accounting for 6.40–16.10% of genetic variation, three loci encoding hilum size, qSH6.2, qSH8, and qSH10, colocated with QTLs for seed yield and quality traits, demonstrating that genes impacting seed hilum size colocalize in part with genes acting on soybean yield and quality. As a result of the breeding efforts and field observations described in this work, it is reasonable to conclude that optimizing hilum size through selection focused on a few QTLs may be useful for breeding new high yielding soybean varieties with favorable quality characteristics.


Sign in / Sign up

Export Citation Format

Share Document