Histological studies of cellular differentiation during somatic embryogenesis of coconut plumule-derived calli

2015 ◽  
Vol 43 (3) ◽  
Author(s):  
K. Lakshmi Jayaraj ◽  
U. Bhavyashree ◽  
T.P. Fayas ◽  
K.K. Sajini ◽  
M.K. Rajesh ◽  
...  

<div><table cellspacing="0" cellpadding="0" align="center"><tbody><tr><td align="left" valign="top"><p>Since coconut is   one of the most recalcitrant species to generate <em>in vitro</em>, it is   necessary to study in detail about the cellular changes that occur during   somatic embryogenesis to enhance our knowledge about this phenomenon. In the   present study, coconut plumular tissues, the shoot meristem including leaf   primordia, were used as explants for <em>in vitro </em>regeneration studies.   Histological studies were carried out in different stages of plumule culture.   No noticeable growth was observed in 15 days old cultures. After 30 days,   meristematic cells could be identified. Abundance of meristematic cells,   foremost to the development of callus structures, was observed after 45 days.   After 75 days, globular friable calli were formed and histological studies   revealed the presence of meristematic centers which eventually formed somatic   embryos. The histological study of matured somatic embryos formed after 120   days of callus initiation showed a clear meristematic zone of parenchyma   cells, surrounded by vascular bundles. Histological studies, carried out for   certain abnormalities like compact calli, abnormal somatic embryoids with   rudimentary shoots and multiplied roots, revealed the presence of intact   cotyledonary leaves which seemed to inhibit the apical meristem development   of somatic embryoids. The presence of vascular bundles in the early stages of   callus formation might lead to the direct formation of meristemoids. These   results could aid future studies leading to enhanced control of the somatic   embryogenic process and greater efficiency of somatic embryo and plantlet   formation in coconut.</p></td></tr></tbody></table></div>

2014 ◽  
Vol 56 (1) ◽  
pp. 55-60 ◽  
Author(s):  
Anna Nadolska-Orczyk ◽  
Stefan Malepszy

The developmental sequence of callus initiation and somatic embryogenesis in leaf explants of <em>Cucumis sativus</em> cv. Borszczagowski was analysed and compared on media containing two different auxin phenoxy-derivatives (2,4-D and 2,4,5-T) and cytokinin (BAP or 2iP). During the first 20 days of culture on media with 2,4,5-T proliferation of parenchymatic tissue occurred mainly and only small meristematic centers were observed. There was an intensive detachment of parenchymatic cells and dissociation of their cell walls near vessels and in the lower part of the explant adjacent to the medium. These cells were strongly plasmolysed. On the 2,4-D containing medium mostly meristematic tissue developed, proliferating around vascular bundles and forming meristematic centers or promeristem-like structures. After 35-50 days of culture, secondary callus was formed by separation of meristematic cells from the meristem surface in explants cultured on the 2,4-D containing medium. On medium supplemented with 2, 4, 5-T the detachment of parenchymatic and meristematic cells occurred, along with formation of a gel-like substance. The gel-like callus contained multi-cellular aggregates, proembryoids and embryoids. This type of callus tissue was initiated more intensively on medium with 2, 4, 5-T, but the frequency of somatic embryogenesis was much lower. The periferial cells of aggregates, proembryoids and embryoids showed the tendency to separate from the surface of the tissue. Many embryoids formed adventitious embryos.


HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 587c-587
Author(s):  
D.J. Gray ◽  
K.A. Labeau ◽  
C.M. Benton

The development of grape somatic embryos (Vitis vinifera cv. Thompson Seedless) was studied using high-resolution light microscopy and scanning electron microscopy. Somatic embryos develop either from discrete embryogenic cell clusters (indirect somatic embryogenesis) or from previously formed somatic embryos (direct somatic embryogenesis). In both instances, embryo development begins when a small, isodiametric, densely cytoplasmic cell undergoes a series of organized divisions, which are identical to those observed during zygotic embryogenesis. Developing embryos pass through recognizable embryonic stages, remaining white and opaque through maturity. Upon germination, embryos begin to enlarge, become yellow, then green, and develop into morphologically correct plants. The cells of somatic embryos contain little starch, but abundant storage proteins. However, lipids comprise the primary storage compound. Some developmental abnormalities occur during embryogenesis, including overly enlarged hypocotyls and fewer or more than two cotyledons. In addition, relatively few somatic embryos grow into plants primarily due to inadequate shoot apical meristem development. These abnormalities are best attributed to inadequacies of the in vitro environment of medium in a culture vessel when compared to the in vivo environment of a seed.


1970 ◽  
Vol 19 (1) ◽  
pp. 89-99
Author(s):  
K. Choudhary ◽  
M. Singh ◽  
M. S. Rathore ◽  
N. S. Shekhawat

This long term study demonstrates for the first time that it is possible to propagate embryogenic Vigna trilobata and to subsequently initiate the differentiation of embryos into complete plantlets. Initiation of callus was possible on 2,4-D. Somatic embryos differentiated on modified MS basal nutrient medium with 1.0 mg/l  of 2,4-D and 0.5 mg/l  of Kn. Sustained cell division resulted in globular and heart shape stages of somatic embryos. Transfer of embryos on to a fresh modified MS basal medium with 0.5 mg/l of Kn and 0.5 mg/l of GA3 helped them to attain maturation and germination. However, the propagation of cells, as well as the differentiation of embryos, were inhibited by a continuous application of these growth regulators. For this reason, a long period on medium lacking these growth regulators was necessary before the differentiation of embryos occurred again. The consequences for improving the propagation of embryogenic cultures in Vigna species are discussed. Key words: Pasture  legume, Vigna trilobata, Globular, Heart shape, somatic embryogenesis D.O.I. 10.3329/ptcb.v19i1.4990 Plant Tissue Cult. & Biotech. 19(1): 89-99, 2009 (June)


2018 ◽  
Vol 23 (1) ◽  
pp. 89
Author(s):  
Augusta Yadira Cueva-Agila ◽  
Rino Cella

Protocorms are unique anatomical structures; they are akin to rhizoids and are formed by young orchid seedlings under physiological conditions. Explanted orchid tissues produce similar structures called protocorm-like bodies (PLBs) when exposed to appropriate <em>in vitro</em> growing conditions. Both the propagative nature of PLBs and the easiness by which they can be generated, make these structures an attractive alternative to seed-mediated production for growing large numbers of plants. To increase somatic embryogenesis and optimize the procedure, PLBs of <em>Cattleya maxima </em>were transformed<em> </em>using the <em>Agrobacterium tumefaciens </em>method. The T-DNA carried a Hygromycin-resistance gene, a visible marker (GFP5-GUSA) and a rice gene encoding the Somatic Embryogenesis Receptor Kinase, deemed to be important for somatic embryogenesis. Treated PLBs generated somatic embryos developing Hygromycin-resistant plantlets. The insertion of T-DNA was confirmed by PCR, and GFP expression was observed using a fluorescent stereomicroscope. Transformed <em>Cattleya maxima</em> PLBs were more efficient in forming somatic embryos (60-80%) than untransformed controls (45-57%), and this contrast was maximized in hormone-free, Murashige and Skoog (MS) medium (80% of the transformed plants compared to 57% of the untransformed ones). This finding supports the notion that SERK<em> </em>plays an important role in Orchid embryogenesis.


2017 ◽  
Vol 17 (1) ◽  
pp. 9
Author(s):  
Yosi Zendra Joni ◽  
Riry Prihatini ◽  
Darda Efendi ◽  
Ika Roostika

<p>Somatic embryogenesis is a technique for regenerating embryos derived from somatic cells of various plant species. This technique along with the utilization of plant growth regulator (PGR) might benefit for mass propagation and improvement of plant species through biotechnological tools. The study aimed to determine the effect of different plant growth regu-lators, namely 6-benzyladenine (BA) and thidiazuron (TDZ) on the embryogenic callus induction as well as casein hydrolysate and malt extract on the somatic embryo development of mangosteen. The explants used were in vitro young stems of mangosteen clone Leuwiliang. This study consisted of two experiments, namely induction of embryogenic callus and formation of somatic embryo. The first experiment was arranged as factorial in a completely randomized design with BA (0 and 0.7 mg l-1) as the first factor and TDZ (0, 0.1, 0.5 and 1.0 mg l-1) as the second factor. The second experiment consisted of four treatments, i.e. casein hydrolysate and malt extract at the rate of 500 and 1,000 mg l-1. The results showed that the best medium for embryogenic callus induction was MS supplemented with 0.1 mg l-1 TDZ, which resulted semifriable calli. Casein hydrolysate and malt extract could not induce the formation of somatic embryos. After two times subcultures on the same MS medium supplemented with 0.5 mg l-1 TDZ and 0.7 mg l-1 BA, a total of 33.8 somatic embryos per explant was induced. The successful somatic embryogenesis would support mangosteen breeding and in vitro mass propagation program.</p>


2018 ◽  
Vol 41 (4) ◽  
Author(s):  
Marlúcia Souza Pádua ◽  
Raíssa Silveira Santos ◽  
Luciano Vilela Paiva ◽  
Vanessa Cristina Stein ◽  
Luciano Coutinho Silva

ABSTRACT Oil palm is a woody monocot of economic importance due to high oil production from its fruits. Currently, the conventional method most used to propagate oil palm is seed germination, but success is limited by long time requirements and low germination percentage. An alternative for large-scale propagation of oil palm is the biotechnological technique of somatic embryogenesis. The rooting of plants germinated from somatic embryos is a difficult step, yet it is of great importance for later acclimatization and success in propagation. The aim of this study was to evaluate the effect of the auxins indole acetic acid (IAA) and indole butyric acid (IBA) on the rooting of somatic embryos of Tenera hybrid oil palm. Plants obtained by somatic embryogenesis were inoculated in modified MS medium with 10% sucrose and 0.6% agar and supplemented with IAA or IBA at concentrations of 5 µM, 10 µM, and 15 µM, and the absence of growth regulators. After 120 days, the presence of roots, root type, length of the longest root, number of roots, number of leaves, and shoot length were analyzed. Growth regulators were favorable to rooting; plants cultivated with IBA growth regulator at 15 µM showed higher rooting percentage (87%) and better results for the parameters of number of roots (1.33) and shoot length (9.83).


2006 ◽  
Vol 1 (3) ◽  
pp. 1934578X0600100
Author(s):  
Bishnu P. Chapagain ◽  
Vinod Saharan ◽  
Dan Pelah ◽  
Ram C. Yadav ◽  
Zeev Wiesman

This study describes the effects of plant growth regulators, explants, and somatic embryogenesis on in vitro production of the steroidal sapogenin, diosgenin, in callus cultures of the Balanites aegyptiaca (L.) Del.(desert date). Root, shoot, hypocotyl, and epicotyl callus culture of B. aegyptiaca, were raised on MS basal media supplemented with various combinations of either 2,4-D and NAA alone, or with BAP. The diosgenin content (on a dry weight basis) was found to be highest when calli were cultured in MS basal medium supplemented with 1.0 mg l−1 2,4-D alone and/or in combination with 0.5 mg l−1 BAP. However, the callus growth was highest in media supplemented with 2.5 or 3.0 mg l−1 2,4-D. MS basal media supplemented with 2,4-D 2.5 mg l−1 alone and in combination with 0.5 mg l−1 BAP induced pre-embryogenic callus formation on root cultures. When these pre-embryogenic callus cultures were used to establish cell suspension cultures, two growth densities were obtained in embryogenic suspension cultures, inducing clusters of somatic embryos at various stages of development. The maximum number of somatic embryos were obtained at the fifth week on the medium supplemented with 1.0 mg l−1 2,4-D. However, the diosgenin content in these somatic cells was found to be lower compared to the explant calluses. This study revealed that production of diosgenin in callus cultures of B. aegyptiaca is possible, but the amount is significantly affected by the growth regulators, type of explants, and somatic embryogenesis.


Forests ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 841
Author(s):  
Maria Teresa Martínez ◽  
Francisco Javier Vieitez ◽  
Alejandro Solla ◽  
Raúl Tapias ◽  
Noelia Ramírez-Martín ◽  
...  

Holm oak (Quercus ilex) is one of the most widely distributed tree species in the Mediterranean basin. High mortality rates have been observed in holm oak populations in the southwest of the Iberian Peninsula as a result of oak decline syndrome. Selection and propagation of genotypes tolerant to this syndrome could aid the restoration of affected areas. In this article, we report micropropagation and conservation procedures based on axillary budding and somatic embryogenesis (SE) of holm oak plants, selected for their tolerance to Phytophthora cinnamomi—the main biotic factor responsible for oak decline. Forced shoots were obtained from potted plants of eight different genotypes, and used as stock material to establish in vitro shoot proliferation cultures. Reliable shoot proliferation was obtained in seven out the eight genotypes established in vitro, whereas multiplication rates were genotype-dependent. The highest rooting rates were obtained by culturing shoots for 24 h or 48 h on rooting induction medium containing 25 mg L−1 indole-3-butyric acid, followed by transfer to medium supplemented with 20 µM silver thiosulphate. Axillary shoot cultures can be successful conserved by cold storage for 12 months at 4 °C under dim lighting. Shoot tips, excised from axillary shoot cultures established from tolerant plants, were used as initial explants to induce SE. Somatic embryos and/or nodular embryogenic structures were obtained on induction medium with or without indole-acetic acid 4 mg L−1, in two out the three genotypes evaluated, and induction rates ranged between 2 and 4%. Plantlet recovery was 45% after two months cold stratification of somatic embryos and eight weeks of culture on germination medium. Vegetative propagation of P. cinnamomi-tolerant Q. ilex trees is a valuable milestone towards the restoration of disease-affected areas.


2015 ◽  
Vol 24 (2) ◽  
pp. 247-262 ◽  
Author(s):  
El Sawy A Mohamed ◽  
Amina Gomaa ◽  
Nancy Danial

Better results were obtained when stigma explants of variegated lemon and citron were used. After ten months, somatic embryos developed into plantlets at a frequency ranged from 13.3 for lime to 66.7% for lemon. Virus presence was tested by ELISA and RT?PCR. The results indicated that the plantlets regenerated through somatic embryogenesis are CTV?free. RAPD analysis was used to asses the genetic stability of plantlets as compared to the mother plants. The results indicated that most plantlets belong to the respective mother plants and the polymorphism percentage was genotype and explant?dependant.Plant Tissue Cult. & Biotech. 24(2): 247-262, 2014 (December


Sign in / Sign up

Export Citation Format

Share Document