scholarly journals Rising Trends of Obesity in Malaysia; Role of Inflammation and Inflammatory Markers in Obesity Related Insulin Resistance: A Nuclear Factor Kappa B (Nfkb) Perspective

Author(s):  
Atif AB
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Caitlin E. Murphy ◽  
Adam K. Walker ◽  
Cynthia Shannon Weickert

AbstractNeuroinflammation, particularly in the dorsolateral prefrontal cortex, is well-established in a subset of people with schizophrenia, with significant increases in inflammatory markers including several cytokines. Yet the cause(s) of cortical inflammation in schizophrenia remains unknown. Clues as to potential microenvironmental triggers and/or intracellular deficits in immunoregulation may be gleaned from looking further upstream of effector immune molecules to transcription factors that control inflammatory gene expression. Here, we focus on the ‘master immune regulator’ nuclear factor kappa B (NF-κB) and review evidence in support of NF-κB dysregulation causing or contributing to neuroinflammation in patients. We discuss the utility of ‘immune biotyping’ as a tool to analyse immune-related transcripts and proteins in patient tissue, and the insights into cortical NF-κB in schizophrenia revealed by immune biotyping compared to studies treating patients as a single, homogenous group. Though the ubiquitous nature of NF-κB presents several hurdles for drug development, targeting this key immunoregulator with novel or repurposed therapeutics in schizophrenia is a relatively underexplored area that could aid in reducing symptoms of patients with active neuroinflammation.


2001 ◽  
Vol 28 (6) ◽  
pp. 626-633 ◽  
Author(s):  
James R. Berenson ◽  
Hongjin M. Ma ◽  
Robert Vescio

Oral Diseases ◽  
2013 ◽  
Vol 20 (3) ◽  
pp. 294-300 ◽  
Author(s):  
T Arabaci ◽  
O Köse ◽  
A Kizildağ ◽  
M Albayrak ◽  
Y Çiçek ◽  
...  

2021 ◽  
Vol 20 (1) ◽  
pp. 169-176
Author(s):  
Jingfang Hu ◽  
Jie Jin ◽  
Yan Chen ◽  
Jinyi Wei ◽  
Hanbei Chen

Diabetes mellitus is a metabolic disorder characterized by inflammation, abnormal glycolipid metabolism, insulin resistance, and mitochondrial dysfunction leading to hyperglycemia. The aim of the present investigation was to determine the efficacy of lycopsamine in a rat model of diabetes mellitus to understand its mechanism. Lycopsamine treatment markedly lowered the level of total cholesterol, triglyceride, nonesterified fatty acids, and low-density lipoprotein in diabetic rats. There was also a reduction in interleukin-6, interleukin-10, C-reactive protein, and tumor necrosis factor-α levels. Lycopsamine treatment normalized the metabolism of lipid and glucose, insulin resistance, and body weight of diabetic rats. Findings of immunohistochemical analyses exhibited rise in precipitation of immunocytes in renal cells. Results potentially demonstrated that lycopsamine treatment remarkably reduced the nuclear factor-kappa B level and enhanced the 5′ adenosine monophosphate-activated protein kinase expression. Altogether, administration of lycopsamine suppressed the expression of inflammatory cytokines and attenuated the metabolic symptoms in diabetes mellitus experimental rats.


Sign in / Sign up

Export Citation Format

Share Document