scholarly journals Product Failure Time Assessments using Early Degradation Filtering

Author(s):  
Emmanuel Bender
2018 ◽  
Vol 10 (1) ◽  
Author(s):  
Wei Huang ◽  
Hamed Khorasgani ◽  
Chetan Gupta ◽  
Ahmed Farahat ◽  
Shuai Zheng

Data-driven Remaining Useful Life (RUL) estimation for systems with abrupt failures is a very challenging problem. In these systems, the degradation starts close to the failure time and accelerates rapidly. Normal data with no sign of degradation can act as noise in the training step, and prevent RUL estimator model from learning the degradation patterns. This can degrade RUL estimation performance significantly. Therefore, it is critical to identify degradation mode during the training step. Moreover, in the application step, predicting RUL when the system is in normal mode and is not showing any sign of degradation can generate inaccurate estimations, and reduce faith in the model. In this paper, we propose a new RUL estimation method that incorporates an early degradation mode detection step to automatically identify the earliest point of time at which the degradation starts to happen. When the degradation mode is detected, a Long Short Term Memory (LSTM) neural network is applied to predict system RUL. As a case study, we apply the proposed method for RUL estimation in 2018 PHM Data Challenge. The case study demonstrates that our solution achieves more accurate RUL estimation compared to several baseline methods.


Author(s):  
A.Yu. Kulakov

Goal. Assess the reliability of a complex technical system with periodic reconfiguration and compare the results obtained a similar system, but without reconfiguration. Materials and methods. In this article uses the method of statistical modeling (Monte Carlo) to assess the reliability of complex system. We using the normal and exponential distribution of failure time for modeling failures of system elements. Reconfiguration algorithm is the algorithm proposed for the attitude and orbit control system of spacecraft. Results. A computer program has been developed for assessing reliability on the basis of a statistical modeling method, which makes it possible to evaluate systems of varying complexity with exponential and normal distribution, as well as with and without periodic reconfiguration. A quantitative estimate of the reliability as a function of the probability of system failure is obtained. Conclusion. It has been demonstrated that a system with reconfiguration has the best reliability characteristics, both in the case of exponential and normal distribution of failures.


2018 ◽  
Author(s):  
Hideaki Marui ◽  
Eisaku Hamasaki ◽  
Gen Furuya
Keyword(s):  

2010 ◽  
Vol 30 (3) ◽  
pp. 600-602
Author(s):  
Jun-gang LOU ◽  
Jian-hui JIANG

Author(s):  
Ehtesham Husain ◽  
Masood ul Haq

<p><span>The reliability (unreliability) and life testing are important topics in the field of engineering, electronic, <span>medicine, economic and many more, where we are interested in, life of components, human organs, <span>subsystem and system. Statistically, a probability distribution failure time (life time) of a certain form is <span>usually assumed to give reliability of a component for a system for each time t. Some well known <span>parametric life time models (T ≥ 0) are Exponential, Weibull, Inverse Weibull, Gamma, Lognormal, <span>normal ( T&gt;0 ; left truncated ) etc. </span></span></span></span></span></span></p><p><span><span><span><span><span><span><span>In this paper we consider a system that, has two components with independent but non-identical life time <span>probabilities explained by two distinct random variables say T<span>1 <span>and T<span>2 <span>, where T<span>1 <span>has a constant hazard <span>rate and T<span>2 <span>has an increasing hazard respectively </span></span></span></span></span></span></span></span><br /><br class="Apple-interchange-newline" /></span></span></span></span></span></span></span></span></span></p>


2021 ◽  
Vol 11 (6) ◽  
pp. 2521
Author(s):  
Feng Jiang ◽  
Jianyong Liu ◽  
Wei Yuan ◽  
Jianbo Yan ◽  
Lin Wang ◽  
...  

Improving the fire resistance of the key cables connected to firefighting and safety equipment is of great importance. Based on the engineering practice of an oil storage company, this study proposes a modification scheme that entails spraying fire-retardant coatings on the outer surface of a cable tray to delay the failure times of the cables in the tray. To verify the effect, 12 specimens were processed using five kinds of fire-retardant coatings and two kinds of fire-resistant cotton to coat the cable tray. The specimens were installed in the vertical fire resistance test furnace. For the ISO 834 standard fire condition, a fire resistance test was carried out on the specimens. The data for the surface temperature and the insulation resistance of the cables in trays were collected, and the fireproof effect was analyzed. The results showed that compared with the control group, the failure time of the cable could be delayed by 1.57–14.86 times, and the thicker the fire-retardant coatings were, the better the fireproof effect was. In general, the fire protection effect of the fire-retardant coating was better than that of the fire-resistant cotton.


Sign in / Sign up

Export Citation Format

Share Document