scholarly journals Tight paths in convex geometric hypergraphs

2020 ◽  
Author(s):  
Dhruv Mubayi ◽  
Zoltán Füredi ◽  
Jacques Verstraëte ◽  
Alexandr Kostochka ◽  
Tao Jiang

One of the most intruguing conjectures in extremal graph theory is the conjecture of Erdős and Sós from 1962, which asserts that every $n$-vertex graph with more than $\frac{k-1}{2}n$ edges contains any $k$-edge tree as a subgraph. Kalai proposed a generalization of this conjecture to hypergraphs. To explain the generalization, we need to define the concept of a tight tree in an $r$-uniform hypergraph, i.e., a hypergraph where each edge contains $r$ vertices. A tight tree is an $r$-uniform hypergraph such that there is an ordering $v_1,\ldots,v_n$ of its its vertices with the following property: the vertices $v_1,\ldots,v_r$ form an edge and for every $i>r$, there is a single edge $e$ containing the vertex $v_i$ and $r-1$ of the vertices $v_1,\ldots,v_{i-1}$, and $e\setminus\{v_i\}$ is a subset of one of the edges consisting only of vertices from $v_1,\ldots,v_{i-1}$. The conjecture of Kalai asserts that every $n$-vertex $r$-uniform hypergraph with more than $\frac{k-1}{r}\binom{n}{r-1}$ edges contains every $k$-edge tight tree as a subhypergraph. The recent breakthrough results on the existence of combinatorial designs by Keevash and by Glock, Kühn, Lo and Osthus show that this conjecture, if true, would be tight for infinitely many values of $n$ for every $r$ and $k$. The article deals with the special case of the conjecture when the sought tight tree is a path, i.e., the edges are the $r$-tuples of consecutive vertices in the above ordering. The case $r=2$ is the famous Erdős-Gallai theorem on the existence of paths in graphs. The case $r=3$ and $k=4$ follows from an earlier work of the authors on the conjecture of Kalai. The main result of the article is the first non-trivial upper bound valid for all $r$ and $k$. The proof is based on techniques developed for a closely related problem where a hypergraph comes with a geometric structure: the vertices are points in the plane in a strictly convex position and the sought path has to zigzag beetwen the vertices.


2019 ◽  
Vol 29 (1) ◽  
pp. 128-136 ◽  
Author(s):  
Bo Ning ◽  
Xing Peng

AbstractThe famous Erdős–Gallai theorem on the Turán number of paths states that every graph with n vertices and m edges contains a path with at least (2m)/n edges. In this note, we first establish a simple but novel extension of the Erdős–Gallai theorem by proving that every graph G contains a path with at least $${{(s + 1){N_{s + 1}}(G)} \over {{N_s}(G)}} + s - 1$$ edges, where Nj(G) denotes the number of j-cliques in G for 1≤ j ≤ ω(G). We also construct a family of graphs which shows our extension improves the estimate given by the Erdős–Gallai theorem. Among applications, we show, for example, that the main results of [20], which are on the maximum possible number of s-cliques in an n-vertex graph without a path with ℓ vertices (and without cycles of length at least c), can be easily deduced from this extension. Indeed, to prove these results, Luo [20] generalized a classical theorem of Kopylov and established a tight upper bound on the number of s-cliques in an n-vertex 2-connected graph with circumference less than c. We prove a similar result for an n-vertex 2-connected graph with circumference less than c and large minimum degree. We conclude this paper with an application of our results to a problem from spectral extremal graph theory on consecutive lengths of cycles in graphs.



2011 ◽  
Vol 20 (4) ◽  
pp. 617-621 ◽  
Author(s):  
ABBAS MEHRABIAN

We consider a variant of the Cops and Robbers game where the robber can movetedges at a time, and show that in this variant, the cop number of ad-regular graph with girth larger than 2t+2 is Ω(dt). By the known upper bounds on the order of cages, this implies that the cop number of a connectedn-vertex graph can be as large as Ω(n2/3) ift≥ 2, and Ω(n4/5) ift≥ 4. This improves the Ω($n^{\frac{t-3}{t-2}}$) lower bound of Frieze, Krivelevich and Loh (Variations on cops and robbers,J. Graph Theory, to appear) when 2 ≤t≤ 6. We also conjecture a general upper boundO(nt/t+1) for the cop number in this variant, generalizing Meyniel's conjecture.



10.37236/429 ◽  
2010 ◽  
Vol 17 (1) ◽  
Author(s):  
Peter Dankelmann ◽  
L. Volkmann

Soares [J. Graph Theory 1992] showed that the well known upper bound $\frac{3}{\delta+1}n+O(1)$ on the diameter of undirected graphs of order $n$ and minimum degree $\delta$ also holds for digraphs, provided they are eulerian. In this paper we investigate if similar bounds can be given for digraphs that are, in some sense, close to being eulerian. In particular we show that a directed graph of order $n$ and minimum degree $\delta$ whose arc set can be partitioned into $s$ trails, where $s\leq \delta-2$, has diameter at most $3 ( \delta+1 - \frac{s}{3})^{-1}n+O(1)$. If $s$ also divides $\delta-2$, then we show the diameter to be at most $3(\delta+1 - \frac{(\delta-2)s}{3(\delta-2)+s} )^{-1}n+O(1)$. The latter bound is sharp, apart from an additive constant. As a corollary we obtain the sharp upper bound $3( \delta+1 - \frac{\delta-2}{3\delta-5})^{-1} n + O(1)$ on the diameter of digraphs that have an eulerian trail.



2018 ◽  
Author(s):  
Benjamin Smith

We defined number of points with an inter-distance of β or more to necessarily exist on a plane. Furthermore, we aimed to reduce the range of this minimum value. We first showed that the upper bound of this value could be scaled by , and further reduced the constant that was multiplied. We compared the upper bound of and the Ramsey number in a special case and confirmed that was a better upper bound than except when were both small or trivial.



2012 ◽  
Vol Vol. 14 no. 2 (Graph Theory) ◽  
Author(s):  
Dieter Rautenbach ◽  
Friedrich Regen

Graph Theory International audience We study graphs G in which the maximum number of vertex-disjoint cycles nu(G) is close to the cyclomatic number mu(G), which is a natural upper bound for nu(G). Our main result is the existence of a finite set P(k) of graphs for all k is an element of N-0 such that every 2-connected graph G with mu(G)-nu(G) = k arises by applying a simple extension rule to a graph in P(k). As an algorithmic consequence we describe algorithms calculating minmu(G)-nu(G), k + 1 in linear time for fixed k.



2020 ◽  
Vol 13 (44) ◽  
pp. 4483-4489
Author(s):  
C Beaula ◽  

Background/Objective: The Coronavirus Covid-19 has affected almost all the countries and millions of people got infected and more deaths have been reported everywhere. The uncertainty and fear created by the pandemic can be used by hackers to steal the data from both private and public systems. Hence, there is an urgent need to improve the security of the systems. This can be done only by building a strong cryptosystem. So many researchers started embedding different topics of mathematics like algebra, number theory, and so on in cryptography to keep the system, safe and secure. In this study, a cryptosystem using graph theory has been attempted, to strengthen the security of the system. Method: A new graph is constructed from the given graph, known as a double vertex graph. The edge labeling of this double vertex graph is used in encryption and decryption. Findings: A new cryptosystem using the amalgamation of the path, its double vertex graph and edge labeling has been proposed. From the double vertex graph of a path, we have given a method to find the original path. To hack such an encrypted key, the knowledge of graph theory is important, which makes the system stronger. Applications:The one-word encryption method will be useful in every security system that needs a password for secure communication or storage or authentication. Keywords: Double vertex graphs; path; adjacency matrix; encryption; cryptography



2004 ◽  
Vol 41 (4) ◽  
pp. 1081-1092 ◽  
Author(s):  
P. Vellaisamy

Consider a sequence of independent Bernoulli trials with success probability p. Let N(n; k1, k2) denote the number of times that k1 failures are followed by k2 successes among the first n Bernoulli trials. We employ the Stein-Chen method to obtain a total variation upper bound for the rate of convergence of N(n; k1, k2) to a suitable Poisson random variable. As a special case, the corresponding limit theorem is established. Similar results are obtained for Nk3(n; k1, k2), the number of times that k1 failures followed by k2 successes occur k3 times successively in n Bernoulli trials. The bounds obtained are generally sharper than, and improve upon, some of the already known results. Finally, the technique is adapted to obtain Poisson approximation results for the occurrences of the above-mentioned events under Markov-dependent trials.



1972 ◽  
Vol 15 (1) ◽  
pp. 39-41 ◽  
Author(s):  
J. W. Moon

A graph is a collection of nodes some pairs of which are joined by a single edge. A k-path, or a path of length k, is a sequence of nodes {p1 p2,… Pk+1} such that Pi is joined to pi+1 for 1 ≤i≤k; we assume the nodes are distinct except that p1 and pk+1 may be the same in which case we call the path a k-cycle or a cycle of length k. (Notice that two nodes joined by an edge determine a 2-cycle according to this definition; it will also be convenient to regard a single node as a 1-cycle.) A spanning path or cycle is one that involves every node of the graph. One of the unsolved problems of graph theory is to characterize those graphs that have a spanning path or cycle.



2019 ◽  
Vol 29 (2) ◽  
pp. 190-199
Author(s):  
Omer Angel ◽  
Abbas Mehrabian ◽  
Yuval Peres

AbstarctFor a rumour spreading protocol, the spread time is defined as the first time everyone learns the rumour. We compare the synchronous push&pull rumour spreading protocol with its asynchronous variant, and show that for any n-vertex graph and any starting vertex, the ratio between their expected spread times is bounded by $O({n^{1/3}}{\log ^{2/3}}n)$. This improves the $O(\sqrt n)$ upper bound of Giakkoupis, Nazari and Woelfel (2016). Our bound is tight up to a factor of O(log n), as illustrated by the string of diamonds graph. We also show that if, for a pair α, β of real numbers, there exist infinitely many graphs for which the two spread times are nα and nβ in expectation, then $0 \le \alpha \le 1$ and $\alpha \le \beta \le {1 \over 3} + {2 \over 3} \alpha $; and we show each such pair α, β is achievable.



2019 ◽  
Vol 29 (1) ◽  
pp. 153-162
Author(s):  
Shachar Sapir ◽  
Asaf Shapira

AbstractThe induced removal lemma of Alon, Fischer, Krivelevich and Szegedy states that if an n-vertex graph G is ε-far from being induced H-free then G contains δH(ε) · nh induced copies of H. Improving upon the original proof, Conlon and Fox proved that 1/δH(ε)is at most a tower of height poly(1/ε), and asked if this bound can be further improved to a tower of height log(1/ε). In this paper we obtain such a bound for graphs G of density O(ε). We actually prove a more general result, which, as a special case, also gives a new proof of Fox’s bound for the (non-induced) removal lemma.



Sign in / Sign up

Export Citation Format

Share Document