scholarly journals An efficient intrusion detection mechanism based on particle swarm optimization and KNN

2020 ◽  
Vol 5 (20) ◽  
pp. 36-41
Author(s):  
Anand Vijay ◽  
Kailash Patidar ◽  
Manoj Yadav ◽  
Rishi Kushwah

In this paper an efficient intrusion detection mechanism based on particle swarm optimization and KNN has been presented. In our approach experimentation has been performed for the intrusion detection considering NSL-KDD dataset. Then the selected weights have been added directly to the final classification which has been received safely. Then the remaining selected weights have been added for the classification. These nodes are originally safe but received unsafe. It has been input for the classification process. KNN has been used for the classification of the initial features and the content features. The remaining features have been transferred to the particle swarm optimization. PSO has been used for the classification of the traffic and host features. It has been classified based on 50% threshold value. The results show that by using our approach the average classification accuracy is approximately 98%. The attack considered here are Denial of Service (DoS), User to Root (U2R), Remote to User /Login (R2L) and Probe.

2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Alejandro Gonzalez ◽  
Isao Nambu ◽  
Haruhide Hokari ◽  
Yasuhiro Wada

Brain-machine interfaces (BMI) rely on the accurate classification of event-related potentials (ERPs) and their performance greatly depends on the appropriate selection of classifier parameters and features from dense-array electroencephalography (EEG) signals. Moreover, in order to achieve a portable and more compact BMI for practical applications, it is also desirable to use a system capable of accurate classification using information from as few EEG channels as possible. In the present work, we propose a method for classifying P300 ERPs using a combination of Fisher Discriminant Analysis (FDA) and a multiobjective hybrid real-binary Particle Swarm Optimization (MHPSO) algorithm. Specifically, the algorithm searches for the set of EEG channels and classifier parameters that simultaneously maximize the classification accuracy and minimize the number of used channels. The performance of the method is assessed through offline analyses on datasets of auditory ERPs from sound discrimination experiments. The proposed method achieved a higher classification accuracy than that achieved by traditional methods while also using fewer channels. It was also found that the number of channels used for classification can be significantly reduced without greatly compromising the classification accuracy.


Sensor Review ◽  
2014 ◽  
Vol 34 (3) ◽  
pp. 304-311 ◽  
Author(s):  
Pengfei Jia ◽  
Fengchun Tian ◽  
Shu Fan ◽  
Qinghua He ◽  
Jingwei Feng ◽  
...  

Purpose – The purpose of the paper is to propose a new optimization algorithm to realize a synchronous optimization of sensor array and classifier, to improve the performance of E-nose in the detection of wound infection. When an electronic nose (E-nose) is used to detect the wound infection, sensor array’s optimization and parameters’ setting of classifier have a strong impact on the classification accuracy. Design/methodology/approach – An enhanced quantum-behaved particle swarm optimization based on genetic algorithm, genetic quantum-behaved particle swarm optimization (G-QPSO), is proposed to realize a synchronous optimization of sensor array and classifier. The importance-factor (I-F) method is used to weight the sensors of E-nose by its degree of importance in classification. Both radical basis function network and support vector machine are used for classification. Findings – The classification accuracy of E-nose is the highest when the weighting coefficients of the I-F method and classifier’s parameters are optimized by G-QPSO. All results make it clear that the proposed method is an ideal optimization method of E-nose in the detection of wound infection. Research limitations/implications – To make the proposed optimization method more effective, the key point of further research is to enhance the classifier of E-nose. Practical implications – In this paper, E-nose is used to distinguish the class of wound infection; meanwhile, G-QPSO is used to realize a synchronous optimization of sensor array and classifier of E-nose. These are all important for E-nose to realize its clinical application in wound monitoring. Originality/value – The innovative concept improves the performance of E-nose in wound monitoring and paves the way for the clinical detection of E-nose.


2021 ◽  
pp. 1-15
Author(s):  
Zhaozhao Xu ◽  
Derong Shen ◽  
Yue Kou ◽  
Tiezheng Nie

Due to high-dimensional feature and strong correlation of features, the classification accuracy of medical data is not as good enough as expected. feature selection is a common algorithm to solve this problem, and selects effective features by reducing the dimensionality of high-dimensional data. However, traditional feature selection algorithms have the blindness of threshold setting and the search algorithms are liable to fall into a local optimal solution. Based on it, this paper proposes a hybrid feature selection algorithm combining ReliefF and Particle swarm optimization. The algorithm is mainly divided into three parts: Firstly, the ReliefF is used to calculate the feature weight, and the features are ranked by the weight. Then ranking feature is grouped according to the density equalization, where the density of features in each group is the same. Finally, the Particle Swarm Optimization algorithm is used to search the ranking feature groups, and the feature selection is performed according to a new fitness function. Experimental results show that the random forest has the highest classification accuracy on the features selected. More importantly, it has the least number of features. In addition, experimental results on 2 medical datasets show that the average accuracy of random forest reaches 90.20%, which proves that the hybrid algorithm has a certain application value.


Sign in / Sign up

Export Citation Format

Share Document