scholarly journals COLOR STABILITY OF A NANOFILLED RESIN: INFLUENCE OF POLISHING AND FINISHING AND FLUORIDE SOLUTIONS ACCORDING TO TIME

2014 ◽  
Vol 2 (2) ◽  
pp. 119 ◽  
Author(s):  
Ana Luísa Botta Martins Oliveira ◽  
Patrícia Aleixo dos Santos Domingos ◽  
Juliana Alvares Duarte Bonini Campos ◽  
Ana Carolina Botta ◽  
Patrícia Petromilli Nordi Sasso Garcia

AIM: The aim of the study was evaluate the finishing and polishing effect of the color stability of the composite resin Filtek Supreme XT, according to different fluoride solutions and time. MATERIAL AND METHODS: Specimens were prepared (n=140) with half of the samples finished and polished. The experimental groups were divided according to the presence or absence of finishing and polishing and immersion solutions (artificial saliva, sodium fluoride solution at 0.05% - manipulated, Fluordent Reach, Oral B, Fluorgard). The specimens remained in artificial saliva for 24 hours and were subjected to an initial color analysis using a spectrophotometer CIELab system. Then, they were immersed in the experimental solutions for 1 minute a day. The readings of the color change were made after 24 and 48 hours, 7, 14, 21, 30 and 60 days after the first immersion. The three-way mixed Analysis of Variance (ANOVA) ("finishing/polishing", "immersion medium" and “time”) were performed. For multiple comparisons, the Sidak test for repeated measure was used, with a 5% level of significance. RESULTS: The finishing and polishing factor showed significant variability, independently of the immersion media (p<0.001). CONCLUSION: Finishing and polishing procedures yielded better color stability to composite resin over time, regardless of the immersion media.

2014 ◽  
Vol 20 (4) ◽  
pp. 1234-1239 ◽  
Author(s):  
Ana Luísa Botta Martins de Oliveira ◽  
Ana Carolina Botta ◽  
Juliana Álvares Duarte Bonini Campos ◽  
Patrícia Petromilli Nordi Sasso Garcia

AbstractThis study evaluated the influence of fluoride mouth rinses and repolishing on the superficial morphology and color stability of nanofilled resin. About 150 specimens were prepared and polished using aluminum oxide discs for 15 s with a pressure of 2 kg. The experimental groups were divided according to the immersion medium (artificial saliva, 0.5% sodium fluoride, Fluordent Reach, Oral B, Fluorgard) and repolishing procedure (without and with). The specimens were continuously immersed for 1 week. Thereafter, half of each sample was repolished. A color reading was performed after 24 h of immersion in the artificial saliva baseline, after continuous immersion, and after repolishing. The superficial morphology was examined using scanning electron microscopy (SEM) in a qualitative way. Color change (∆E) data were submitted to a mixed analysis of variance using a Shapiro–Wilk test (p>0.05 for the different immersion media) and Sidak’s test (p<0.05 for the differences between groups). In the interaction between the repolishing and the immersion media, Fluorgard showed a statistical difference between the ∆E values with and without repolishing (p<0.0001). On the SEM observations, both Fluordent Reach and Fluorgard caused degradation of the superficial resinous matrix of the composite after continuous immersion. This matrix was removed after repolishing.


2015 ◽  
Vol 44 (5) ◽  
pp. 262-267 ◽  
Author(s):  
José Vitor Quinelli Mazaro ◽  
Luiz Miguel Minani ◽  
Adriana Cristina Zavanelli ◽  
Caroline Cantieri de Mello ◽  
Cleidiel Aparecido Araújo Lemos

AbstractIntroductionTemporary restorative materials are widely used, however, little is know about their color stability.Objectiveto evaluate the color stability of the following temporary restorative materials: acrylic and bis-acrylic resins after immersion in pigmenting solutions for different periods of storage.Material and methodFour materials were tested (Dêncor/Clássico, Protemp 4/3M ESPE; Structur 2 SC/Voco; Luxatemp AM Plus/DMG) and 30 test specimens (15 mm in diameter and 2 mm thick) per material were fabricated. They were divided according to the storage medium (artificial saliva, saliva + cola type soda, and saliva + coffee) and storage time intervals (2, 5, 7 and 15 days). Color measurements were made before and after immersions, with use of a spectrophotometer, by means of the CIE L*a*b* system. The data were analyzed by the analysis of variance and the Tukey Test, at a level of significance of 5%.ResultAcrylic resin presented greater color stability in comparison with bis-acrylic resins (p<0.001). When bis-acrylic resins were compared no significant difference was observed between the resins Structur and Luxatemp (p=0.767). As regards solutions tested, coffee showed the highest color change values (p<0.001), and the longer the storage time interval, the greater was the color change in all the temporary restorative materials analyzed (p<0.001).ConclusionAcrylic resin presented greater color stability in comparison with bis-acrylic resins (p<0.001). Coffee caused the greatest color change, and immersion time was determinant in color stability of the temporary materials analyzed.


2013 ◽  
Vol 07 (02) ◽  
pp. 165-171 ◽  
Author(s):  
Duygu Tuncer ◽  
Emel Karaman ◽  
Esra Firat

ABSTRACT Objective: To investigate the effect of beverages′ temperature on the surface roughness, hardness, and color stability of a composite resin. Materials and Methods: Fifty specimens of the Filtek Z250 composite (3M ESPE, Dental Products, St.Paul, MN, USA) were prepared and initial roughness, microhardness, and color were measured. Then the specimens were randomly divided into five groups of 10 specimens each: Coffee at 70°C, coffee at 37°C, cola at 10°C, cola at 37°C, and artificial saliva (control). After the samples were subjected to 15 min × 3 cycles per day of exposure to the solutions for 30 days, the final measurements were recorded. Results: After immersion in beverages, the artificial saliva group showed hardness values higher than those of the other groups (P < 0.001) and the microhardness values were significantly different from the initial values in all groups except for the control group. Both cola groups showed roughness values higher than the baseline values (P < 0.05), while the other groups showed values similar to the baseline measurements. When ΔE measurements were examined, the 70°C coffee group showed the highest color change among all the groups (P < 0.05). Conclusion: High-temperature solutions caused alterations in certain properties of composites, such as increased color change, although they did not affect the hardness or roughness of the composite resin material tested.


2021 ◽  
Vol 23 (2) ◽  
pp. 85-91
Author(s):  
Guilherme Ortiz Pinto Cruz ◽  
Larissa Martins Costa ◽  
Cesar Penazzo Lepri ◽  
Ruchele Dias Nogueira ◽  
Regina Guenka Palma-Dibb ◽  
...  

AbstractThe aim of this study was to evaluate the color stability and the surface roughness of different composites brushed with toothpastes presenting different levels of abrasivity. Thirty discs of each material were obtained using michohybrid composites (Brilliant NG and Charisma Diamond) and a nanocomposite (Filtek Z350XT). The initial color (CIELab) and surface roughness (confocal laser scanning microscopy) of resin discs were evaluated. Afterwards, 10 specimens per group were brushed with the following dentifrices: Maximum Cavity Protection, Sensodyne Repair & Protect and Colgate Sensitive Pro-Relief. Brushing was performed with an electric toothbrush equipped with soft bristle head, with standard power and weight, for 30 minutes. Every 30 seconds, 1.0 ml of the slurry was injected between the bristles of the brush and the specimen. After abrasive challenge, the samples had their color and roughness reevaluated. Data were submitted to the Kruskal-Wallis test (color change) or the t-test (surface roughness). The level of significance was 5%. Results: Brushing did not significantly change the color of the composites tested in the study herein . On the other hand, the surface roughness of the composites was significantly affected by the abrasive challenge, regardless of the toothpaste used. The surface roughness change was similar for all the composites. The abrasive challenge with the toothpastes Maximum Cavity protection, Sensodyne Repair & Protect and Colgate Sensitive Pro-Relief was not able to significantly change the color of the composite resins. Nevertheless, the abrasive challenges significantly altered the surface roughness of all the evaluated composites. However, the changes in surface roughness were statistically similar in the microhybrid and nanofilled composites. Keywords: Composites Resins. Dentifrices. Color. ResumoO objetivo deste estudo foi avaliar a estabilidade de cor e a rugosidade superficial de diferentes resinas compostas escovadas com dentifrícios de diferentes níveis de abrasividade. Trinta discos de cada material foram obtidos utilizando compósitos micro-híbridos (Brilliant NG e Charisma Diamond) e um nanocompósito (Filtek Z350XT). A cor inicial (CIELab) e a rugosidade superficial (microscopia confocal de varredura a laser) dos discos de resina foram avaliadas. Em seguida, 10 amostras por grupo foram escovadas com os dentifrícios Máxima Proteção Anticáries, Sensodyne Repair & Protect e Colgate Sensitive Pro-Alívio. A escovação foi realizada com uma escova elétrica com cabeça de cerdas macias, com potência e peso padronizados, durante 30 minutos. A cada 30 segundos, 1,0 ml da pasta era injetada entre as cerdas da escova e a amostra. Após o desafio abrasivo, as amostras tiveram sua cor e rugosidade reavaliadas. Os dados foram submetidos ao teste de Kruskal-Wallis (alteração de cor) ou ao teste t (rugosidade da superfície) (α=5%). A escovação não alterou significativamente a cor dos compósitos. Por outro lado, a rugosidade superficial dos compósitos foi significativamente afetada pelo desafio abrasivo, independentemente do dentifrício utilizado. A alteração da rugosidade superficial foi semelhante para todos os compósitos. O desafio abrasivo com a Máxima Proteção Anticáries, o Sensodyne Repair & Protect e o Colgate Sensitive Pro-Alívio não foi capaz de alterar significativamente a cor das resinas. Diferentemente, os desafios abrasivos alteraram significativamente a rugosidade superficial de todos os compósitos avaliados. No entanto, as mudanças na rugosidade foram estatisticamente semelhantes nos compósitos micro-híbridos e nanoparticulado. Palavras-chave: Resinas Compostas. Dentifrícios. Cor.


Author(s):  
Izabelle Fiamma Alves Pessoa Matias CALIXTO ◽  
Michelly Rodrigues Dantas GAMA ◽  
Júlia Peixoto CAMPOS ◽  
Celina Wanderley de ABREU ◽  
Lucas Lactim FERRAREZ ◽  
...  

ABSTRACT Objective to analyze the surface roughness and color stability of the composite resin after surface treatment with the aluminum oxide discs and subsequent exposure to the Advanced Teeth Whitening Strips. Methods 20 specimens of the Filtek Z350XT restorer (3M®) were prepared and daily subjected to home bleaching for 30 minutes during 14 days. A precision rugosimeter was used in order to verify the roughness by means of 3 random readings in the same direction in each sample. For color stability the CIELAB system (L*, a*, b* values) was used through the spectrophotometer (MINOLTA CR -321, Japan). The means of the test specimens as well as the mean of each group were calculated using the random readings. Data statistical analysis were performed by ANOVA- analysis of variance. The level of significance was set at 5% (p ≤ 0.05). Results Roughness did not present great numerical variations. No statistically significant difference between the means obtained concerning the surface roughness of the composite resin with p = 0.44 was observed. However, it was found that there was a statistically significant difference between the means obtained in relation to the color stability of the composite resin, p=0. 007. Conclusion It was concluded that pre-contoured strips containing 6% hydrogen peroxide do not have a significant adverse effect on the roughness of Z350XT (3M®) resin. However, it was also concluded that according to the color stability analysis performed, there may be an indication of the restoration replacement after the bleaching treatment, due to their color change.


2021 ◽  
Vol 15 (1) ◽  
pp. 53-58
Author(s):  
Lais Sampaio Souza ◽  
Tais Rocha Donato ◽  
Gabriela Alves Cerqueira ◽  
Andrea Nobrega Cavalcanti ◽  
Paula Mathias

Background. Post-cured composite resins exhibit improvements in physical and mechanical properties due to additional polymerization conversion. However, the post-curing techniques might influence the color stability of composite resin materials. Thus, this study evaluated the color stability of a nanofilled composite resin (Filtek Z350 XT - 3M ESPE) subjected to different post-curing techniques. Methods. Sixty samples (color A2) were randomly allocated to six experimental groups (n=10): G1: photoactivation (P) (control); G2: P + microwave oven with distilled water; G3: P + microwave oven without distilled water; G4: P + conventional oven; G5: P + dry-heat sterilizer; G6: P + steam autoclave. All the groups were stored in distilled water for 60 days and immersed daily in 5 mL of a coffee solution for 3 minutes. The color readings (CIEL*a*b* system) were performed at two different time intervals, initially and after 60 days, in a reflectance spectrophotometer (UV-2600; Shimadzu). The colorimetric readings were performed using the Color Analysis software (CIEL*a*b* system). Results. Group G6 exhibited significantly low values of total color change (ΔE=13.16). The control (ΔE=15.32) and G5 (ΔE=15.49) groups exhibited intermediate values, with no difference between them. In turn, the groups in which the resin was heated in a microwave (G2 ΔE=18.55 and G3 ΔE=19.45) exhibited the most significant color changes (one-way ANOVA and Tukey test, P≤0.05). Conclusion. Steam autoclave post-polymerization increased the color stability of the nanofilled resin subjected to artificial aging and coffee immersion.


2015 ◽  
Vol 63 (4) ◽  
pp. 383-388
Author(s):  
Luísa Bandeira Pires Monteiro LOPES ◽  
Andreia Sofia Lopes de ARAÚJO ◽  
Virginia Barreiros MILAGRE

Objective: To quantify the color variation of two glass ionomer cements and a composite resin used in pediatric dentistry, after being immersed in different pigments agents. Methods: Using two glass ionomer cements (Ketac(tm) Molar and Photac(tm) Fil) and a microhybrid composite resin (Filtek(tm) z250), were produced 40 disks of each material (10 mm in diameter and 2 mm thick). The samples were soaked in artificial saliva (control group), coke, peach Ice Tea(r) and chocolate milk, for 72 hours in an oven at 37ºC. After this period, the samples were washed in 50 ml of distilled water. Finally, using the spectrophotometer, it was made the reading of results. The color change was measured according to the CIE L * a * b * system. Color changes were statistically analyzed using parametric one-way ANOVA and ANOVA with Welch correction, the nonparametric Kruskal-Wallis tests and post-hoc Tukey and Dunnet T3 with p≤ 0.05. Results: The immersion of restorative materials in different pigmentation agents caused a significant color variation on the samples. The agent who presented higher results was the Peach Ice Tea(r). The chocolate milk was the fluid with lowest pigmentation capacity of all restorative materials under study. The greater color variation was found on the Ketac(tm) Molar submerged in Coca-Cola(r) and the smallest on the Filtek(tm) z250 in chocolate milk. Conclusion: All restorative materials were shown to be susceptible to pigmentation by all agents. The Filtek(tm) z250 proved to have better color stability, followed by Photac(tm) Fil and finally by Ketac(tm) Molar.


2019 ◽  
Vol 30 (1) ◽  
pp. 52-57 ◽  
Author(s):  
Eduardo Haruki Ozera ◽  
Fernanda Miori Pascon ◽  
Américo Bortolazzo Correr ◽  
Regina Maria Puppin-Rontani ◽  
Aline Rogéria de Castilho ◽  
...  

Abstract This study evaluated gloss and color changes of esthetic restorative materials subjected to different acidic beverages. Specimens of resin composites (Z350XT (Z350), IPS Empress Direct (ED), Charisma Diamond (CD)) were prepared and the initial surface gloss and color (ΔE) were measured (n=10). Then, the specimens were immersed in 4 mL of each of the different beverages (cranberry juice; Coca-Cola; coffee or artificial saliva) during 15 min, 3x/day for 14 days and new gloss and color readings were obtained. Color change was evaluated with the ΔE formula and gloss change values were obtained by the formula: (final gloss - initial gloss). Data was submitted to two-way ANOVA followed by Tukey’s post hoc test (a=0.05). CD showed the lowest color change among resin composites. The highest ΔE values were obtained after immersion in coffee and cranberry juice. Coffee promoted the highest gloss change (worst gloss retention), followed by cranberry juice, Coca-cola and artificial saliva (p<0.05). The type of beverage significantly influenced the gloss of resin composites. Coca-cola reduced gloss of the three resin composites in a similar manner. Coffee affected the ED gloss more than that of Z350 and CD, while cranberry juice affected Z350 more than ED and CD. Saliva had a more pronounced effect on the gloss retention of CD than ED. The beverages used in this study influenced the optical surface properties of the composites studied.


2011 ◽  
Vol 05 (02) ◽  
pp. 143-149 ◽  
Author(s):  
Raphael Mendes Bezerra Rattacaso ◽  
Lucas de Fonseca Roberti Garcia ◽  
Fabiano Gamero Aguilar ◽  
Simonides Consani ◽  
Fernanda de Carvalho Panzeri Pires-de-Souza

ABSTRACTObjectives: The purpose of this study was to evaluate the bleaching agent action on color stability, surface roughness and microhardness of composites (Charisma, Filtek Supreme and Heliomolar - A2) submitted to accelerated artificial aging (AAA). Methods: A Teflon matrix (12 x 2 mm) was used to fabricate 18 specimens (n=6) which, after polishing (Sof-Lex), were submitted to initial color reading (ΔE), Knoop microhardness (KHN) (50 g/15 s load) and roughness (Ra) (cut-off 0.25 mm) tests. Afterwards, the samples were submitted to AAA for 384 hours and new color, microhardness and roughness readings were performed. After this, the samples were submitted to daily application (4 weeks) of 16% Carbamide Peroxide (NiteWhite ACP) for 8 hours and kept in artificial saliva for 16 hours. New color, microhardness and roughness readings were made at the end of the cycle, and 15 days after bleaching. Results: Comparison of the ΔE means (2-way ANOVA, Bonferroni, P<.05) indicated clinically unacceptable color alteration for all composites after AAA, but without significant difference. Statistically significant increase in the KHN values after AAA was observed, but without significant alterations 15 days after bleaching. For Ra there was no statistically significant difference after AAA and 15 days after bleaching. Conclusions: The alterations promoted by the bleaching agent and AAA are material dependent. (Eur J Dent 2011;5:143-149)


Author(s):  
Gisseli Bertozzi Ávila ◽  
Sergio Candido Dias ◽  
Mariana Lima da Costa Valente ◽  
José Augusto Marcondes Agnelli ◽  
Andréa Candido dos Reis

Objective: The aesthetics of dental materials is extremely important for the success of oral rehabilitation. Thus, in the present study we evaluated the color stability and the surface degradation of three micro hybrid composite resins after accelerated artificial aging process (AAA). Methods: Were prepared 24 specimens (n=8) for each material: Solidex, Artglass and Cesead, dimensions of Ø 15 mm by 2 mm in thickness. The samples were subjected to color analysis, before and after AAA, in a spectrophotometer according to the CIE L*a*b* parameters, and a sample of each material, was selected for morphological evaluation under scanning electron microscopy (SEM). The data were submitted to one-way ANOVA and Tukey test (α=0.05). Results: Artglass showed higher stability regarding the presence of red and yellow (p<0.05) when subjected to the AAA and fewer of these pigments (p<0.05) when compared to the Cesead and Solidex, which showed the highest luminance stability (p<0.05). ΔE Cesead was the most unstable (p<0.05). All resins analyzed by SEM showed superficial degradation when submitted to the AAA, mainly in resin Cesead. Conclusion: All materials analyzed demonstrate color change and surface degradation, Cesead resin showed the worse results.


Sign in / Sign up

Export Citation Format

Share Document